Atnaujinkite slapukų nuostatas

El. knyga: Pseudo-reductive Groups

(Stanford University, California), (Institut des Hautes Études Scientifiques, France), (University of Michigan, Ann Arbor)
  • Formatas: PDF+DRM
  • Serija: New Mathematical Monographs
  • Išleidimo metai: 04-Jun-2015
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316310076
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: New Mathematical Monographs
  • Išleidimo metai: 04-Jun-2015
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316310076
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems"--

Recenzijos

Review of previous edition: 'This book is an impressive piece of work; many hard technical difficulties are overcome in order to provide the general structure of pseudo-reductive groups and to elucidate their classification by means of reasonable data. In view of the importance of this class of algebraic groups and of the impact of a better understanding of them on the general theory of linear algebraic groups, this book can be considered a fundamental reference in the area.' Mathematical Reviews Review of previous edition: 'Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will appreciate this book and find many deep ideas, results and technical tools that may be used in other branches of mathematics.' Zentralblatt MATH '[ This book] is devoted to the elucidation of the structure and classification of pseudo-reductive groups over imperfect fields, completing the program initiated by J. Tits, A. Borel and T. Springer in the last three decades of the last century [ it] is a remarkable achievement and the definitive reference for pseudo-reductive groups. It certainly belongs in the library of anyone interested in algebraic groups and their arithmetic and geometry.' Felipe Zaldivar, MAA Reviews (maa.org/press/maa-reviews)

Daugiau informacijos

This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form.
Preface to the second edition xi
Introduction xiii
Terminology, conventions, and notation xxiii
PART I Constructions, examples, and structure theory
1(156)
1 Overview of pseudo-reductivity
3(41)
1.1 Comparison with the reductive case
3(8)
1.2 Elementary properties of pseudo-reductive groups
11(5)
1.3 Preparations for the standard construction
16(10)
1.4 The standard construction and examples
26(8)
1.5 Main result
34(2)
1.6 Weil restriction and fields of definition
36(8)
2 Root groups and root systems
44(48)
2.1 Limits associated to 1-parameter subgroups
45(16)
2.2 Pseudo-parabolic subgroups
61(12)
2.3 Root groups in pseudo-reductive groups
73(11)
2.4 Representability of automorphism functors
84(8)
3 Basic structure theory
92(65)
3.1 Perfect normal subgroups of pseudo-reductive groups
92(8)
3.2 Root datum for pseudo-reductive groups
100(6)
3.3 Unipotent groups associated to semigroups of weights
106(16)
3.4 Bruhat decomposition and Levi subgroups
122(16)
3.5 Classification of pseudo-parabolic subgroups
138(19)
PART II Standard presentations and their applications
157(70)
4 Variation of (G', k'/k, T', C)
159(14)
4.1 Absolutely simple and simply connected fibers
159(5)
4.2 Uniqueness of (G', k' /k)
164(9)
5 Ubiquity of the standard construction
173(29)
5.1 Main theorem and central extensions
173(8)
5.2 Properties of standardness and standard presentations
181(10)
5.3 A standardness criterion
191(11)
6 Classification results
202(25)
6.1 The A1 case away from characteristic 2
203(6)
6.2 Types A2 and G2 away from characteristic 3
209(5)
6.3 General cases away from characteristics 2 and 3
214(13)
PART III General classification and applications
227(236)
7 The exotic constructions
229(36)
7.1 Calculations in characteristics 2 and 3
229(10)
7.2 Basic exotic pseudo-reductive groups
239(12)
7.3 Algebraic and arithmetic aspects of basic exotic pseudo-reductive groups
251(14)
8 Preparations for classification in characteristics 2 and 3
265(24)
8.1 Further properties of basic exotic pseudo-reductive groups
265(5)
8.2 Exceptional and exotic pseudo-reductive groups
270(19)
9 Absolutely pseudo-simple groups in characteristic 2
289(133)
9.1 Subgroups of RK/K(SL2) and RK/K(PGL2)
290(16)
9.2 Pseudo-split pseudo-simple groups of type A1
306(4)
9.3 Root groups and module schemes
310(10)
9.4 Central quotients
320(14)
9.5 Computations with a multipliable root
334(5)
9.6 Birational group law preparations
339(17)
9.7 Construction of birational group laws
356(15)
9.8 Properties of the groups GV(2), V', n
371(41)
9.9 Classification over fields k with [ k: k2] = 2
412(10)
10 General case
422(16)
10.1 Factors with non-reduced root system and the generalized standard construction
422(9)
10.2 Classification via generalized standard groups
431(7)
11 Applications
438(25)
11.1 Maximal tori in pseudo-reductive groups
438(5)
11.2 Pseudo-semisimplicity
443(5)
11.3 Unirationality
448(4)
11.4 Structure of root groups and pseudo-parabolic subgroups
452(11)
PART IV Appendices
463(2)
A Background in linear algebraic groups
465(96)
A.1 Review of definitions
466(8)
A.2 Some results from the general theory
474(8)
A.3 Frobenius morphisms and non-affine groups
482(6)
A.4 Split reductive groups: Existence, Isomorphism, and Isogeny Theorems
488(15)
A.5 Weil restriction generalities
503(20)
A.6 Groups without Levi subgroups
523(5)
A.7 Lie algebras and Weil restriction
528(12)
A.8 Lie algebras and groups of multiplicative type
540(21)
B Tits' work on unipotent groups in nonzero characteristic
561(20)
B.1 Subgroups of vector groups
561(6)
B.2 Wound unipotent groups
567(4)
B.3 The cckp-kernel
571(4)
B.4 Torus actions on unipotent groups
575(6)
C Rational conjugacy and relative root systems
581(75)
C.1 Pseudo-completeness
581(11)
C.2 Conjugacy results in the smooth affine case
592(48)
C.3 Split unipotent subgroups of pseudo-reductive groups
640(9)
C.4 Beyond the smooth affine case
649(7)
References 656(3)
Index 659
Brian Conrad is a Professor in the Department of Mathematics at Stanford University. Ofer Gabber is a Directeur de Recherches CNRS at the Institut des Hautes Études Scientifiques (IHÉS). Gopal Prasad is Raoul Bott Professor of Mathematics at the University of Michigan.