Atnaujinkite slapukų nuostatas

Pseudodifferential Operators with Automorphic Symbols 2015 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 202 pages, aukštis x plotis: 240x168 mm, weight: 454 g, X, 202 p., 1 Paperback / softback
  • Serija: Pseudo-Differential Operators 11
  • Išleidimo metai: 26-Jun-2015
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3319186566
  • ISBN-13: 9783319186566
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 202 pages, aukštis x plotis: 240x168 mm, weight: 454 g, X, 202 p., 1 Paperback / softback
  • Serija: Pseudo-Differential Operators 11
  • Išleidimo metai: 26-Jun-2015
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3319186566
  • ISBN-13: 9783319186566
Kitos knygos pagal šią temą:
The main results of this book combine pseudo differential analysis with modular form theory. The methods rely for the most part on explicit spectral theory and the extended use of special functions. The starting point is a notion of modular distribution in the plane, which will be new to most readers and relates under the Radon transformation to the classical one of modular form of the non-holomorphic type. Modular forms of the holomorphic type are addressed too in a more concise way, within a general scheme dealing with quantization theory and elementary, but novel, representation-theoretic concepts.

Introduction.- Basic modular distributions.- From the plane to the half-plane.- A short introduction to the Weyl calculus.- Composition of joint eigenfunctions of (...) and (...).- The sharp composition of modular distributions.- The operator with symbol (...).- from non-holomorphic to holomorphic modular forms.- Index.

Recenzijos

The book under review is devoted to developing a satisfactory Weyl calculus on the class of tempered automorphic distributions under the group SL(2, Z). The book is readable and is an interesting introduction to the subject. The main ideas are explained in detail and illustrated by exact computations. ( Ngc Dip, Mathematical Reviews, December, 2015)

Preface v
Introduction 1(6)
1 Basic modular distributions
7(20)
1.1 Eisenstein distributions
8(11)
1.2 Hecke distributions
19(8)
2 From the plane to the half-plane
27(24)
2.1 Modular distributions and non-holomorphic modular forms
28(9)
2.2 Bihomogeneous functions and joint eigenfunctions of (Δ, EulΠ)
37(7)
2.3 A class of automorphic functions
44(7)
3 A short introduction to the Weyl calculus
51(32)
3.1 An introduction to the Weyl calculus limited to essentials
52(7)
3.2 Spectral decompositions in L2(R2) and L2(Π)
59(13)
3.3 The sharp composition of homogeneous functions
72(7)
3.4 When the Weyl calculus falls short of doing the job
79(4)
4 Composition of joint eigenfunctions of ε and ξ∂/∂x
83(40)
4.1 Estimates of sharp products hv1,q1 # hv2,q2
84(7)
4.2 Improving the estimates
91(7)
4.3 A regularization argument
98(2)
4.4 Computing an elementary integral
100(5)
4.5 The sharp product of joint eigenfunctions of ε, ξ∂/&∂x
105(10)
4.6 Transferring a sharp product hv1,q1 # hv2,q2 to the half-plane
115(8)
5 The sharp composition of modular distributions
123(46)
5.1 The decomposition of automorphic distributions
124(10)
5.2 On the product or Poisson bracket of two Hecke eigenforms
134(8)
5.3 The sharp product of two Hecke distributions
142(19)
5.4 The case of two Eisenstein distributions
161(8)
6 The operator with symbol ev
169(14)
6.1 Extending the validity of the spectral decomposition of a sharp product
169(2)
6.2 The odd-odd part of Op(ev) when |Re V| < 1/2
171(1)
6.3 The harmonic oscillator
172(5)
6.4 The square of zeta on the critical line; non-critical zeros
177(6)
7 From non-holomorphic to holomorphic modular forms
183(14)
7.1 Quantization theory and composition formulas
184(5)
7.2 Anaplectic representation and pseudodifferential analysis
189(8)
Bibliography 197(4)
Index 201