Atnaujinkite slapukų nuostatas

Pure Metric Geometry 1st ed. 2023 [Minkštas viršelis]

  • Formatas: Paperback / softback, 103 pages, aukštis x plotis: 235x155 mm, weight: 185 g, 17 Illustrations, black and white; VIII, 103 p. 17 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 22-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031391616
  • ISBN-13: 9783031391613
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 103 pages, aukštis x plotis: 235x155 mm, weight: 185 g, 17 Illustrations, black and white; VIII, 103 p. 17 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 22-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031391616
  • ISBN-13: 9783031391613
Kitos knygos pagal šią temą:

This book serves as an introductory asset for learning metric geometry by delivering an in-depth examination of key constructions and providing an analysis of universal spaces, injective spaces, the Gromov-Hausdorff convergence, and ultralimits. This book illustrates basic examples of domestic affairs of metric spaces, this includes Alexandrov geometry, geometric group theory, metric-measure spaces and optimal transport.

Researchers in metric geometry will find this book appealing and helpful, in addition to graduate students in mathematics, and advanced undergraduate students in need of an introduction to metric geometry. Any previous knowledge of classical geometry, differential geometry, topology, and real analysis will be useful in understanding the presented topics. 

Recenzijos

This is a succinct introduction to the tools one needs to understand metric geometry. It starts with the most basic definitions ... to move on to more advanced topics ... . There are exercises of various levels of difficulty with 'semisolutions' at the back of the book. For complicated solutions, the source of the solution in the literature is also mentioned. (Victor V. Pambuccian, zbMATH 1541.54001, 2024)

Preface.- Definitions.- Universal Spaces.- Injective Spaces.- Space of Subsets.- Space of Spaces.- Ultralimits.- Semisolutions.- Bibliography.

Anton Petrunin is Professor of Mathematics at Penn State.