Atnaujinkite slapukų nuostatas

El. knyga: Qualitative Approach to Inverse Scattering Theory

  • Formatas: PDF+DRM
  • Serija: Applied Mathematical Sciences 188
  • Išleidimo metai: 28-Oct-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461488279
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Applied Mathematical Sciences 188
  • Išleidimo metai: 28-Oct-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461488279
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Inverse scattering theory is an important area of applied mathematics due to its central role in such areas as medical imaging , nondestructive testing and geophysical exploration. Until recently all existing algorithms for solving inverse scattering problems were based on using either a weak scattering assumption or on the use of nonlinear optimization techniques. The limitations of these methods have led in recent years to an alternative approach to the inverse scattering problem which avoids the incorrect model assumptions inherent in the use of weak scattering approximations as well as the strong a priori information needed in order to implement nonlinear optimization techniques. These new methods come under the general title of qualitative methods in inverse scattering theory and seek to determine an approximation to the shape of the scattering object as well as estimates on its material properties without making any weak scattering assumption and using essentially no a priori information on the nature of the scattering object. This book is designed to be an introduction to this new approach in inverse scattering theory focusing on the use of sampling methods and transmission eigenvalues. In order to aid the reader coming from a discipline outside of mathematics we have included background material on functional analysis, Sobolev spaces, the theory of ill posed problems and certain topics in in the theory of entire functions of a complex variable. This book is an updated and expanded version of an earlier book by the authors published by Springer titled Qualitative Methods in Inverse Scattering Theory

Review of Qualitative Methods in Inverse Scattering Theory All in all, the authors do exceptionally well in combining such a wide variety of mathematical material and in presenting it in a well-organized and easy-to-follow fashion. This text certainly complements the growing body of work in inverse scattering and should well suit both new researchers to the field as well as those who could benefit from such a nice codified collection of profitable results combined in one bound volume. SIAM Review, 2006



This book introduces new approaches in inverse scattering theory focusing on the use of sampling methods and transmission eigenvalues. Includes background material on functional analysis, Sobolev spaces, the theory of ill posed problems and other topics.

Recenzijos

From the book reviews:

This monograph provides an introduction to the ideas of inverse scattering theory in the framework of classical integral equation methods and is intended as an (advanced) introductory text into this particular research field. The monograph can serve as a focused record of the essential building blocks of the integral equation approach to scattering theory and is well able to act as a door-opener into the intricacies of the vast body of literature in the field of electromagnetic scattering. (Rainer Picard, zbMATH, Vol. 1302, 2015)

This valuable book is an introduction to qualitative methods in inverse scattering theory . The book is accessible to anyone with a basic mathematical background in advanced calculus and linear algebra .after having mastered the material in it the reader will be fully prepared to understand the literature on qualitative methods for inverse scattering problems in other areas of application, such as acoustics and elasticity. (Barbara Prinari, Mathematical Reviews, November, 2014)

1 Functional Analysis and Sobolev Spaces
1(26)
1.1 Normed Spaces
1(5)
1.2 Bounded Linear Operators
6(8)
1.3 Adjoint Operator
14(3)
1.4 Sobolev Space Hp[ 0, 2π]
17(6)
1.5 Sobolev Space Hp(∂D)
23(4)
2 Ill-Posed Problems
27(18)
2.1 Regularization Methods
28(2)
2.2 Singular Value Decomposition
30(6)
2.3 Tikhonov Regularization
36(9)
3 Scattering by Imperfect Conductors
45(18)
3.1 Maxwell's Equations
45(2)
3.2 Bessel Functions
47(4)
3.3 Direct Scattering Problem
51(12)
4 Inverse Scattering Problems for Imperfect Conductors
63(22)
4.1 Far-Field Patterns
64(3)
4.2 Uniqueness Theorems for Inverse Problem
67(5)
4.3 Linear Sampling Method
72(6)
4.4 Determination of Surface Impedance
78(3)
4.5 Limited Aperture Data
81(2)
4.6 Near-Field Data
83(2)
5 Scattering by Orthotropic Media
85(26)
5.1 Maxwell Equations for an Orthotropic Medium
85(4)
5.2 Mathematical Formulation of Direct Scattering Problem
89(5)
5.3 Variational Methods
94(11)
5.4 Solution of Direct Scattering Problem
105(6)
6 Inverse Scattering Problems for Orthotropic Media
111(54)
6.1 Formulation of Inverse Problem
112(2)
6.2 Interior Transmission Problem
114(8)
6.3 Transmission Eigenvalue Problem
122(25)
6.3.1 The Case n = 1
123(13)
6.3.2 The Case n ≠ 1
136(1)
6.3.3 Discreteness of Transmission Eigenvalues
136(4)
6.3.4 Existence of Transmission Eigenvalues for n ≠ 1
140(7)
6.4 Uniqueness
147(4)
6.5 Linear Sampling Method
151(9)
6.6 Determination of Transmission Eigenvalues from Far-Field Data
160(5)
7 Factorization Methods
165(38)
7.1 Factorization Method for Obstacle Scattering
166(20)
7.1.1 Preliminary Results
166(10)
7.1.2 Properties of Far-Field Operator
176(4)
7.1.3 Factorization Method
180(6)
7.2 Factorization Method for an Inhomogeneous Medium
186(13)
7.2.1 Preliminary Results
186(5)
7.2.2 Properties of Far-Field Operator
191(2)
7.2.3 Factorization Method
193(6)
7.3 Justification of Linear Sampling Method
199(3)
7.4 Closing Remarks
202(1)
8 Mixed Boundary Value Problems
203(60)
8.1 Scattering by a Partially Coated Perfect Conductor
204(7)
8.2 Inverse Scattering Problem for Partially Coated Perfect Conductor
211(5)
8.3 Numerical Examples
216(5)
8.4 Scattering by Partially Coated Dielectric
221(10)
8.5 Inverse Scattering Problem for Partially Coated Dielectric
231(6)
8.6 Numerical Examples
237(3)
8.7 Scattering by Cracks
240(11)
8.8 Inverse Scattering Problem for Cracks
251(7)
8.9 Numerical Examples
258(5)
9 Inverse Spectral Problems for Transmission Eigenvalues
263(16)
9.1 Entire Functions
263(4)
9.2 Transformation Operators
267(2)
9.3 Transmission Eigenvalues
269(5)
9.4 An Inverse Spectral Theorem
274(5)
10 A Glimpse at Maxwell's Equations
279(8)
References 287(8)
Index 295
Professors Cakoni and Colton are Professors of Mathematics at the University of Delaware, DE, USA. They are authors of a number of previous books published together and separately with both Springer and SIAM.