Atnaujinkite slapukų nuostatas

El. knyga: Quantitative Biosciences Companion in R: Dynamics across Cells, Organisms, and Populations

  • Formatas: 272 pages
  • Išleidimo metai: 09-Jan-2024
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9780691259604
  • Formatas: 272 pages
  • Išleidimo metai: 09-Jan-2024
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9780691259604

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A hands-on lab guide in the R programming language that enables students in the life sciences to reason quantitatively about living systems across scales

This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty.

  • Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities
  • Encourages good coding practices, clear and understandable modeling, and accessible presentation of results
  • Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale
  • Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations
  • Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own
  • Stand-alone computational lab guides for Quantitative Biosciences also available in Python and MATLAB
Joshua S. Weitz is professor and the Clark Leadership Chair in Data Analytics in the Department of Biology at the University of Maryland. Previously, he held the Tom and Marie Patton Chair in Biological Sciences at the Georgia Institute of Technology, where he founded the Interdisciplinary Graduate Program in Quantitative Biosciences. He is the author of Quantitative Viral Ecology (Princeton). Marian Domķnguez-Mirazo is a PhD candidate in Quantitative Biosciences in the School of Biological Sciences at the Georgia Institute of Technology.