Atnaujinkite slapukų nuostatas

Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology [Kietas viršelis]

(Czech Metrology Institute)
  • Formatas: Hardback, 336 pages, aukštis x plotis: 235x191 mm, weight: 800 g
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 19-Nov-2012
  • Leidėjas: William Andrew Publishing
  • ISBN-10: 1455730580
  • ISBN-13: 9781455730582
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 336 pages, aukštis x plotis: 235x191 mm, weight: 800 g
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 19-Nov-2012
  • Leidėjas: William Andrew Publishing
  • ISBN-10: 1455730580
  • ISBN-13: 9781455730582
Kitos knygos pagal šią temą:

Accurate measurement at the nano-scale - nanometrology - is a critical tool for advanced nanotechnology applications, where exact quantities and engineering precision are beyond the capabilities of traditional measuring techniques and instruments. Scanning Probe Microscopy (SPM) builds up a picture of a specimen by scanning with a physical probe; unrestrained by the wavelength of light or electrons, the resolution obtainable with this technique can resolve atoms. SPM instruments include the Atomic Force Microscope (AFM) and Scanning Tunneling Microscope (STM).

Despite tremendous advances in Scanning Probe Microscopy (SPM) over the last twenty years, its potential as a quantitative measurement tool have not been fully realized, due to challenges such as the complexity of tip/sample interaction. In this book, Petr Klapetek uses the latest research to unlock SPM as a toolkit for nanometrology in fields as diverse as nanotechnology, surface physics, materials engineering, thin film optics, and life sciences. Klapetek's considerable experience of Quantitive Data Processing, using software tools, enables him to not only explain the microscopy techniques, but also to demystify the analysis and interpretation of the data collected.

In addition to the essential principles and theory of SPM metrology, Klapetek provides readers with a number of worked examples to demonstrate typical ways of solving problems in SPM analysis. Source data for the examples as well as most of the described open source software tools are available on a companion website.

  • Unlocks the use of Scanning Probe Microscopy (SPM) for nanometrology applications in engineering, physics, life science and earth science settings.
  • Provides practical guidance regarding areas of difficulty such as tip/sample interaction and calibration - making metrology applications achievable.
  • Gives guidance on data collection and interpretation, including the use of software-based modeling (using applications that are mostly freely available).

Daugiau informacijos

Petr Klapatek unlocks the use of Scanning Probe Microscopy (SPM) for nanometrology applications in engineering, physics, life science and earth science settings.
Preface xi
Chapter 1 Motivation
1(16)
1.1 Why "Quantitative" Scanning Probe Microscopy?
1(4)
1.1.1 Book Organization
2(2)
1.1.2 Available Numerical Techniques
4(1)
1.2 What is Scanning Probe Microscopy?
5(4)
1.3 Basic Metrology Concepts
9(3)
1.3.1 Measurement Traceability
9(2)
1.3.2 Measurement Uncertainty
11(1)
1.4 Scanning Probe Microscopy and Quantitative Measurements
12(5)
Chapter 2 Instrumentation Principles
17(18)
2.1 Few Components for the Price of a House?
17(8)
2.1.1 Scanner
17(5)
2.1.2 Probe
22(1)
2.1.3 Interaction Sensing Element & Feedback Loop
23(1)
2.1.4 Electronics
24(1)
2.1.5 Vibration Isolation
24(1)
2.2 Novel Approaches
25(10)
2.2.1 More Accurate Instruments
26(1)
2.2.2 Larger Range Measurements
27(2)
2.2.3 Faster Measurements
29(6)
Chapter 3 Data Models
35(20)
3.1 From Analog to Digital
35(1)
3.2 Data Acquisition Basics
35(5)
3.2.1 Data Sampling
35(2)
3.2.2 Feedback Loop Effects
37(3)
3.3 Image Sampling
40(3)
3.3.1 Regular Sampling
40(1)
3.3.2 Irregular Sampling
41(2)
3.4 Data Storage
43(2)
3.5 Mechanical and Thermal Drifts
45(5)
3.6 Noise
50(2)
3.7 Try it Yourself
52(1)
3.8 Tips and Tricks
52(3)
Chapter 4 Basic Data Processing
55(26)
4.1 A Daily Bread?
55(2)
4.1.1 Gwyddion
56(1)
4.2 Data Visualization
57(1)
4.3 Local Data Manipulation
58(2)
4.3.1 Outliers
58(1)
4.3.2 Scars
59(1)
4.4 Global Data Manipulation
60(13)
4.4.1 Resampling and Interpolation
61(3)
4.4.2 Data Leveling and Background Extraction
64(3)
4.4.3 Fourier Transform Filtering
67(2)
4.4.4 Wavelet Filtering
69(4)
4.5 Multiple Channel Operations
73(1)
4.6 Scripting
74(1)
4.7 Data Generation
74(3)
4.8 Other Freely Available Data Processing Software
77(1)
4.8.1 GXSM
77(1)
4.8.2 WSxM
78(1)
4.9 Try it Yourself
78(1)
4.9.1 Read More
78(1)
4.10 Tips and Tricks
78(3)
Chapter 5 Dimensional Measurements
81(46)
5.1 The Easiest Measurement?
81(1)
5.2 Atomic Force Microscopy Principles
82(6)
5.2.1 Contact Mode
84(1)
5.2.2 Dynamic Modes
84(4)
5.3 Atomic Force Microscopy Dimensional Data Measurement and Evaluation
88(11)
5.3.1 Direct Dimensional Quantities
89(1)
5.3.2 Statistical Quantities
89(10)
5.4 Atomic Force Microscopy and Quantitative Dimensional Metrology
99(22)
5.4.1 International Documentary Standards for Scanning Probe Microscopy
99(1)
5.4.2 Dimensional Calibrations by Scanning Probe Microscope
100(1)
5.4.3 Ensuring Traceability: Transfer Standards for Scanning Probe Microscopes
101(3)
5.4.4 Calibration of the Vertical Axis with Step Height Standards
104(2)
5.4.5 Calibration of the Two Lateral Axes with Lateral Standards
106(1)
5.4.6 Alternative Calibration of all Three Axes with 3D Pyramidal Standards
106(2)
5.4.7 Uncertainties in Dimensional Measurements
108(2)
5.4.8 Positioning System Systematic Errors
110(2)
5.4.9 Positioning System Short and Long Time Instability
112(1)
5.4.10 Tip-Sample Convolution Effects
112(9)
5.5 Try it Yourself
121(1)
5.5.1 Read More
122(1)
5.6 Tips and Tricks
122(5)
Chapter 6 Force and Mechanical Properties
127(46)
6.1 What About Forces in Force Microscopy?
127(1)
6.2 Forces and Force-Distance Curves
128(14)
6.2.1 Short Range Repulsive Forces and Contact Theories
131(6)
6.2.2 Van der Waals Forces
137(1)
6.2.3 Electrostatic Forces
138(2)
6.2.4 Magnetic Forces
140(1)
6.2.5 Capillary Forces
140(2)
6.2.6 Other Forces
142(1)
6.3 Force Interaction Modeling
142(8)
6.3.1 Quantum Nanoscale Modeling
143(4)
6.3.2 Classical Nanoscale Modeling
147(2)
6.3.3 Mesoscopic Modeling
149(1)
6.3.4 Continuum Modeling
149(1)
6.4 Quantitative Force Measurements
150(11)
6.4.1 Cantilever Stiffness Calibration
151(6)
6.4.2 Force-Distance Curves Interpretation and Artifacts
157(3)
6.4.3 Alternative Approaches
160(1)
6.5 Local Mechanical and Material Properties Mapping
161(6)
6.5.1 Z Modulation
161(1)
6.5.2 Phase Imaging
162(1)
6.5.3 Special Modes
163(4)
6.6 Try it Yourself
167(1)
6.7 Tips and Tricks
168(5)
6.7.1 Read More
168(5)
Chapter 7 Friction and Lateral Forces
173(18)
7.1 What Opposes the Tip Motion?
173(1)
7.2 Forces
174(5)
7.3 Friction Force Modeling
179(1)
7.4 Quantitative Friction Force Measurements
179(6)
7.4.1 Lateral Force Sensor Calibration
179(4)
7.4.2 Friction Force Measurements Data Artifacts
183(2)
7.5 Special Modes
185(1)
7.5.1 Independent Friction Measurement
185(1)
7.5.2 Torsional Resonance Microscopy
185(1)
7.6 Try it Yourself
186(1)
7.7 Tips and Tricks
186(5)
7.7.1 Read More
187(4)
Chapter 8 Electrostatic Fields
191(16)
8.1 What is Above the Sample? See the Invisible!
191(2)
8.2 Basic Relations
193(3)
8.3 Modeling
196(2)
8.4 Instrumentation
198(1)
8.5 Quantitative Data Interpretation
199(3)
8.5.1 Artifacts
200(1)
8.5.2 Resolution
201(1)
8.6 Try it Yourself
202(1)
8.7 Tips and Tricks
203(4)
Chapter 9 Magnetic Fields
207(14)
9.1 Magnetic Fields Measurements
207(1)
9.2 Basic Relations
208(3)
9.3 Modeling
211(1)
9.4 Instrumentation
212(3)
9.5 Data Interpretation
215(2)
9.6 Try it Yourself
217(1)
9.6.1 Read More
217(1)
9.7 Tips and Tricks
218(3)
Chapter 10 Local Current Measurements
221(26)
10.1 Where it All Started
221(1)
10.2 Tip-Sample Junction Models
222(3)
10.3 Scanning Tunneling Microscopy and Related Methods
225(6)
10.3.1 Interaction Models
226(2)
10.3.2 Numerical Modeling
228(1)
10.3.3 Instrumentation
229(1)
10.3.4 Data Interpretation
229(2)
10.4 Conductive Atomic Force Microscopy
231(11)
10.4.1 Analytical Models
232(1)
10.4.2 Modeling
233(2)
10.4.3 Instrumentation
235(1)
10.4.4 Data Interpretation
235(7)
10.5 Try it Yourself
242(1)
10.6 Tips and Tricks
243(4)
10.6.1 Read More
243(4)
Chapter 11 Thermal Measurements
247(18)
11.1 Really a Hot Topic?
247(1)
11.2 Nano- and Microscale Heat Flow
248(7)
11.2.1 Conduction
248(2)
11.2.2 Convection
250(1)
11.2.3 Radiation
250(1)
11.2.4 Heat Sources in Scanning Probe Microscope
251(1)
11.2.5 Tip-Sample Models of Heat Transfer
252(2)
11.2.6 Modeling Approaches
254(1)
11.3 Instrumentation
255(2)
11.3.1 Available Techniques
255(1)
11.3.2 Development Approaches
256(1)
11.4 Data Interpretation
257(5)
11.4.1 Artifacts Treatment
258(4)
11.5 Try it Yourself
262(1)
11.5.1 Read More
263(1)
11.6 Tips and Tricks
263(2)
Chapter 12 Optical Measurements
265(30)
12.1 Have a Look at Nanoscale
265(1)
12.2 Fundamental Phenomena
266(2)
12.3 Basic Techniques
268(2)
12.3.1 Aperture SNOM
269(1)
12.3.2 Apertureless SNOM and TERS
270(1)
12.4 Numerical Analysis
270(5)
12.4.1 Classical Electrodynamics
270(2)
12.4.2 Finite Difference in Time Domain modeling
272(3)
12.5 Quantitative Measurements
275(15)
12.5.1 Instrument Calibration
276(1)
12.5.2 Artifacts and Uncertainty Sources
276(10)
12.5.3 Quantitative Data Interpretation---Image Modeling
286(4)
12.6 Try it Yourself
290(1)
12.7 Tips and Tricks
290(5)
Chapter 13 Sample Data Files
295(2)
13.1 Morphology, Tip-Sample Artifacts, etc
296(1)
13.2 Mechanical Properties
296(1)
13.3 Electric and Magnetic Properties
296(1)
13.4 Thermal Properties
296(1)
13.5 Optical Properties
296(1)
Chapter 14 Numerical Modeling Techniques
297(22)
14.1 Density Functional Theory
298(3)
14.1.1 Example: Quantum Espresso
300(1)
14.1.2 Other Packages
301(1)
14.2 Classical Molecular Dynamics
301(4)
14.2.1 Example
305(1)
14.2.2 Other Packages
305(1)
14.3 Dislocation Dynamics
305(3)
14.3.1 Example: MicroMegas
308(1)
14.3.2 Other Packages
308(1)
14.4 Finite Difference Method
308(3)
14.4.1 Example: OOMMF
311(1)
14.5 Finite Element Method
311(1)
14.5.1 Examples: Elmer
311(1)
14.5.2 Other Packages
312(1)
14.6 Finite Difference in Time Domain Method
312(7)
14.6.1 Example: Gsvit
315(1)
14.6.2 Other Packages
315(4)
Index 319
Petr Klapetek is Head, Department of Nanometrology at the Czech Metrology Institute, Czech Republic. His research focuses on the metrology scanning probe microscope (SPM) construction, a key standard for nanometrology.He also participates in the Gwyddion project, focused on the creation of multiplatform open-source software for scanning probe microscopy (SPM) data analysis.