Atnaujinkite slapukų nuostatas

El. knyga: Quantitative Epidemiology

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is designed to train graduate students across disciplines within the fields of public health and medicine, with the goal of guiding them in the transition to independent researchers. It focuses on theories, principles, techniques, and methods essential for data processing and quantitative analysis to address medical, health, and behavioral challenges. Students will learn to access to existing data and process their own data, quantify the distribution of a medical or health problem to inform decision making; to identify influential factors of a disease/behavioral problem; and to support health promotion and disease prevention. Concepts, principles, methods and skills are demonstrated with SAS programs, figures and tables generated from real, publicly available data. In addition to various methods for introductory analysis, the following are featured, including 4-dimensional measurement of distribution and geographic mapping, multiple linear and logistic regression, Poisson regression, Cox regression, missing data imputing, and statistical power analysis.  

1. Introduction to Quantitative Epidemiology.-
2. Characters, Variables, Data, and Information.-
3. Quantitative Descriptive Epidemiology.-
4. Causal Exploration with Bivariate Analysis.-
5. Confirmation with Multiple Linear Regression.-
6. Multivariate Analyses of Categorical and Counting Data.-
7. Multivariate Analysis of Time to Event Data.-
8. Simultaneous Analysis of Two Correlated Predictors.-
9. Special Issues with Quantitative Epidemiology.-
10. Power Analysis.
Professor Xinguang Chen is a fellow of the American College of Epidemiology, a professor of epidemiology with tenure at the University of Florida, and a chair professor at Wuhan University Global Health Institute. He serves as coeditor-in-chief of Global Health Research and Policy, deputy editor-in-chief of Global Health Journal, coeditor of Statistical Methods for Global Health and Epidemiology (with D.-G. Chen, Springer 2020), and advisory board member of the WHO-China Information Collaboration Center at Peoples Health Publication House of China. Professor Chen is well known for his long standing in quantitative method research and graduate teaching in public health, medicine and health behaviors. He has published 300+ manuscripts in peer-reviewed journals, 5 authored books, and a list of book chapters and encyclopedia entries.