Preface |
|
xvii | |
|
A Brief Introduction to Information Theory |
|
|
1 | (10) |
|
|
1 | (1) |
|
Information Content in a Signal |
|
|
2 | (1) |
|
Entropy and Shannon's Information Theory |
|
|
3 | (4) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (3) |
|
Qubits and Quantum States |
|
|
11 | (28) |
|
|
11 | (3) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
16 | (1) |
|
|
17 | (1) |
|
Linear Combinations of Vectors |
|
|
17 | (2) |
|
|
18 | (1) |
|
|
18 | (1) |
|
Uniqueness of a Spanning Set |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (3) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (2) |
|
Gram-Schmidt Orthogonalization |
|
|
26 | (2) |
|
|
26 | (1) |
|
|
26 | (2) |
|
|
28 | (3) |
|
|
29 | (1) |
|
|
29 | (2) |
|
The Cauchy-Schwartz and Triangle Inequalities |
|
|
31 | (4) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (3) |
|
|
39 | (34) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
Representations of Operators Using Matrices |
|
|
42 | (1) |
|
Outer Products and Matrix Representations |
|
|
43 | (1) |
|
|
44 | (1) |
|
Matrix Representation of Operators in Two-Dimensional Spaces |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
Definition: The Pauli Matrices |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
Hermitian, Unitary, and Normal Operators |
|
|
46 | (2) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
Definition: Hermitian Operator |
|
|
47 | (1) |
|
Definition: Unitary Operator |
|
|
48 | (1) |
|
Definition: Normal Operator |
|
|
48 | (1) |
|
Eigenvalues and Eigenvectors |
|
|
48 | (5) |
|
The Characteristic Equation |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (3) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (2) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
Important Properties of the Trace |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
The Expectation Value of an Operator |
|
|
57 | (5) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (4) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (2) |
|
|
67 | (1) |
|
|
67 | (1) |
|
The Heisenberg Uncertainty Principle |
|
|
68 | (1) |
|
Polar Decomposition and Singular Values |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
The Postulates of Quantum Mechanics |
|
|
70 | (1) |
|
Postulate 1: The State of a System |
|
|
70 | (1) |
|
Postulate 2: Observable Quantities Represented by Operators |
|
|
70 | (1) |
|
Postulate 3: Measurements |
|
|
70 | (1) |
|
Postulate 4: Time Evolution of the System |
|
|
71 | (1) |
|
|
71 | (2) |
|
|
73 | (12) |
|
Representing Composite States in Quantum Mechanics |
|
|
74 | (2) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
Tensor Products of Column Vectors |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
Operators and Tensor Products |
|
|
79 | (4) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
Tensor Products of Matrices |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (36) |
|
The Density Operator for a Pure State |
|
|
86 | (5) |
|
Definition: Density Operator for a Pure State |
|
|
87 | (1) |
|
Definition: Using the Density Operator to Find the Expectation Value |
|
|
88 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
89 | (1) |
|
Time Evolution of the Density Operator |
|
|
90 | (1) |
|
Definition: Time Evolution of the Density Operator |
|
|
91 | (1) |
|
The Density Operator for a Mixed State |
|
|
91 | (1) |
|
Key Properties of a Density Operator |
|
|
92 | (7) |
|
|
93 | (1) |
|
|
93 | (2) |
|
|
95 | (1) |
|
Probability of Obtaining a Given Measurement Result |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
Characterizing Mixed States |
|
|
99 | (12) |
|
|
100 | (1) |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (2) |
|
|
108 | (1) |
|
Probability of Finding an Element of the Ensemble in a Given State |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
|
111 | (1) |
|
The Partial Trace and the Reduced Density Operator |
|
|
111 | (4) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
The Density Operator and the Bloch Vector |
|
|
115 | (2) |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (4) |
|
Quantum Measurement Theory |
|
|
121 | (26) |
|
Distinguishing Quantum States and Measurement |
|
|
121 | (2) |
|
|
123 | (9) |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
130 | (2) |
|
Measurements on Composite Systems |
|
|
132 | (7) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (2) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
Positive Operator-Valued Measures |
|
|
141 | (4) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (2) |
|
|
147 | (26) |
|
|
151 | (4) |
|
Bipartite Systems and the Bell Basis |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
157 | (1) |
|
When Is a State Entangled? |
|
|
157 | (5) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
159 | (3) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (4) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (3) |
|
|
166 | (1) |
|
Using Bell States For Density Operator Representation |
|
|
166 | (2) |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (3) |
|
Quantum Gates and Circuits |
|
|
173 | (24) |
|
|
173 | (3) |
|
|
175 | (1) |
|
|
176 | (4) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (3) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (2) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
Basic Quantum Circuit Diagrams |
|
|
185 | (1) |
|
|
186 | (6) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (3) |
|
|
195 | (2) |
|
|
197 | (28) |
|
|
198 | (3) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
Matrix Representation of Serial and Parallel Operations |
|
|
201 | (1) |
|
|
202 | (1) |
|
Quantum Parallelism and Function Evaluation |
|
|
203 | (4) |
|
|
207 | (4) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (2) |
|
Quantum Fourier Transform |
|
|
211 | (2) |
|
|
213 | (3) |
|
|
216 | (2) |
|
Quantum Searching and Grover's Algorithm |
|
|
218 | (3) |
|
|
221 | (4) |
|
Applications of Entanglement: Teleportation and Superdense Coding |
|
|
225 | (14) |
|
|
226 | (3) |
|
Teleportation Step 1: Alice and Bob Share an Entangled Pair of Particles |
|
|
226 | (1) |
|
Teleportation Step 2: Alice Applies a CNOT Gate |
|
|
226 | (1) |
|
Teleportation Step 3: Alice Applies a Hadamard Gate |
|
|
227 | (1) |
|
Teleportation Step 4: Alice Measures Her Pair |
|
|
227 | (1) |
|
Teleportation Step 5: Alice Contacts Bob on a Classical Communications Channel and Tells Him Her Measurement Result |
|
|
228 | (1) |
|
The Peres Partial Transposition Condition |
|
|
229 | (5) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (2) |
|
|
234 | (2) |
|
|
236 | (2) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (12) |
|
A Brief Overview of RSA Encryption |
|
|
241 | (2) |
|
|
242 | (1) |
|
|
242 | (1) |
|
Basic Quantum Cryptography |
|
|
243 | (3) |
|
|
245 | (1) |
|
|
245 | (1) |
|
An Example Attack: The Controlled NOT Attack |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (2) |
|
Quantum Noise and Error Correction |
|
|
251 | (28) |
|
|
252 | (2) |
|
Quantum Operations and Krauss Operators |
|
|
254 | (6) |
|
|
255 | (1) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (1) |
|
The Depolarization Channel |
|
|
260 | (1) |
|
The Bit Flip and Phase Flip Channels |
|
|
261 | (1) |
|
|
262 | (8) |
|
|
265 | (1) |
|
|
265 | (5) |
|
|
270 | (2) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
272 | (5) |
|
|
277 | (2) |
|
Tools of Quantum Information Theory |
|
|
279 | (26) |
|
|
279 | (2) |
|
|
281 | (5) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (5) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
290 | (1) |
|
Entanglement of Formation and Concurrence |
|
|
291 | (5) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
Information Content and Entropy |
|
|
296 | (7) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (2) |
|
Adiabatic Quantum Computation |
|
|
305 | (10) |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
308 | (2) |
|
|
308 | (1) |
|
|
309 | (1) |
|
Adiabatic Quantum Computing |
|
|
310 | (3) |
|
|
310 | (1) |
|
|
310 | (3) |
|
|
313 | (2) |
|
Cluster State Quantum Computing |
|
|
315 | (14) |
|
|
316 | (3) |
|
Cluster State Preparation |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
317 | (2) |
|
|
319 | (1) |
|
|
320 | (2) |
|
Aside: Entanglement Witness |
|
|
322 | (2) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
326 | (3) |
References |
|
329 | (2) |
Index |
|
331 | |