Atnaujinkite slapukų nuostatas

El. knyga: Quantum Electronics for Atomic Physics and Telecommunication 2nd Revised edition [Oxford Scholarship Online E-books]

(University of Washington, Seattle)
  • Formatas: 496 pages, 254 b/w illustrations
  • Serija: Oxford Graduate Texts
  • Išleidimo metai: 08-May-2014
  • Leidėjas: Oxford University Press
  • ISBN-13: 9780199665488
  • Oxford Scholarship Online E-books
  • Kaina nežinoma
  • Formatas: 496 pages, 254 b/w illustrations
  • Serija: Oxford Graduate Texts
  • Išleidimo metai: 08-May-2014
  • Leidėjas: Oxford University Press
  • ISBN-13: 9780199665488
Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics and other related areas such as telecommunications. The book covers the usual topics, such as Gaussian beams, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. Among the latter are such practical matters as the enhancement of nonlinear processes in a build-up cavity or periodically polled waveguide, impedance matching into a cavity, laser frequency stabilization (including servomechanism theory), astigmatism in ring cavities, and frequency locking a laser to an atomic or molecular line.

The second edition includes a new complete chapter on optical waveguide theory, fiber optic components and fiber lasers. Other updates include new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.
1 Gaussian beams
1(11)
1.1 Introduction
1(1)
1.2 The paraxial wave equation
1(1)
1.3 Gaussian beam functions and the complex beam parameter, q
2(1)
1.4 Some Gaussian beam properties
3(2)
1.5 The phase term: Gouy phase
5(1)
1.6 Simple transformation properties of the complex beam parameter
6(2)
1.7 Matrix formulation of paraxial ray optics: ABCD rule
8(2)
1.8 Further reading
10(1)
1.9 Problems
11(1)
2 Optical resonators -- geometrical properties
12(23)
2.1 Introduction
12(1)
2.2 The two-mirror standing-wave cavity
12(2)
2.3 Stability
14(2)
2.4 Solution for an arbitrary two-mirror stable cavity
16(2)
2.5 Higher-order modes
18(2)
2.6 Resonant frequencies
20(1)
2.7 The traveling-wave (ring) cavity
21(4)
2.8 Astigmatism in a ring cavity
25(4)
2.9 Mode matching
29(2)
2.10 Beam quality characterization: the M2 parameter
31(2)
2.11 Further reading
33(1)
2.12 Problems
34(1)
3 Energy relations in optical cavities
35(17)
3.1 Introduction
35(1)
3.2 Reflection and transmission at an interface
35(1)
3.3 Reflected fields from standing-wave cavity
36(1)
3.4 Internal (circulating) field in a standing-wave cavity
37(1)
3.5 Reflected and internal intensities
38(1)
3.6 The resonant character of the reflected and circulating intensities
39(1)
3.7 Impedance matching
40(3)
3.8 Fields and intensities in ring cavity
43(1)
3.9 A novel “r;reflective”r; coupling scheme using a tilted wedge
44(1)
3.10 Photon lifetime
45(1)
3.11 The quality factor, Q
46(1)
3.12 Relation between Q and finesse
46(1)
3.13 Alternative representation of cavity loss
47(1)
3.14 Experimental determination of cavity parameters
47(3)
3.15 Further reading
50(1)
3.16 Problems
50(2)
4 Optical cavity as frequency discriminator
52(19)
4.1 Introduction
52(1)
4.2 A simple example
52(2)
4.3 Side of resonance discriminant
54(1)
4.4 The manipulation of polarized beams: the Jones calculus
55(2)
4.5 The polarization technique
57(3)
4.6 Frequency modulation
60(2)
4.7 The Pound--Drever--Hall approach
62(4)
4.8 Frequency response of a cavity-based discriminator
66(3)
4.9 Further reading
69(1)
4.10 Problems
69(2)
5 Laser gain and some of its consequences
71(32)
5.1 Introduction
71(1)
5.2 The wave equation
71(1)
5.3 The interaction term
72(1)
5.4 The rotating-wave approximation
73(1)
5.5 Density matrix of two-level system
74(2)
5.6 The classical Bloch equation
76(3)
5.7 Connection between two-level atom and spin-1/2 system
79(3)
5.8 Radiative and collision-induced damping
82(5)
5.9 The atomic susceptibility and optical gain
87(4)
5.10 The Einstein A and B coefficients
91(4)
5.11 Doppler broadening: an example of inhomogeneous broadening
95(2)
5.12 Comments on saturation
97(4)
5.13 Further reading
101(1)
5.14 Problems
101(2)
6 Laser oscillation and pumping mechanisms
103(21)
6.1 Introduction
103(1)
6.2 The condition for laser oscillation
103(1)
6.3 The power output of a laser
104(2)
6.4 Pumping in three-level and four-level laser systems
106(3)
6.5 Laser oscillation frequencies and pulling
109(1)
6.6 Inhomogeneous broadening and multimode behavior
110(2)
6.7 Spatial hole burning
112(1)
6.8 Some consequences of the photon model for laser radiation
113(2)
6.9 The photon statistics of laser radiation
115(6)
6.10 The ultimate linewidth of a laser
121(1)
6.11 Further reading
122(1)
6.12 Problems
122(2)
7 Descriptions of specific CW laser systems
124(16)
7.1 Introduction
124(1)
7.2 The He--Ne laser
124(2)
7.3 The argon-ion laser
126(3)
7.4 The continuous-wave organic dye laser
129(4)
7.5 The titanium-sapphire laser
133(2)
7.6 The CW neodymium-yttrium-aluminum-garnet (Nd: YAG) laser
135(2)
7.7 The YAG non-planar ring oscillator: a novel ring laser geometry
137(1)
7.8 Diode-pumped solid-state (DPSS) YAG lasers
138(1)
7.9 Further reading
139(1)
8 Laser gain in a semiconductor
140(22)
8.1 Introduction
140(1)
8.2 Solid-state physics background
140(11)
8.3 Optical gain in a semiconductor
151(9)
8.4 Further reading
160(1)
8.5 Problems
160(2)
9 Semiconductor diode lasers
162(53)
9.1 Introduction
162(1)
9.2 The homojunction semiconductor laser
162(3)
9.3 The double heterostructure laser
165(5)
9.4 Quantum-well lasers
170(6)
9.5 Distributed feedback lasers
176(6)
9.6 The rate equations and relaxation oscillations
182(8)
9.7 Diode laser frequency control and linewidth
190(5)
9.8 External cavity diode lasers (ECDLs)
195(10)
9.9 Semiconductor laser amplifiers and injection locking
205(6)
9.10 Miscellaneous characteristics of semiconductor lasers
211(2)
9.11 Further reading
213(1)
9.12 Problems
213(2)
10 Guided-wave devices and fiber lasers
215(74)
10.1 Introduction
215(1)
10.2 Slab waveguide: preliminary analysis
215(4)
10.3 Wave propagation in a slab waveguide
219(11)
10.4 Wave propagation in a fiber -- ray theory
230(3)
10.5 Wave propagation in a fiber -- wave theory
233(8)
10.6 Dispersion in fibers and waveguides
241(4)
10.7 Coupling into optical fibers
245(4)
10.8 Fiber-optic components
249(20)
10.8.1 Directional coupler
250(3)
10.8.2 The loop reflector
253(3)
10.8.3 Fiber Bragg gratings
256(3)
10.8.4 Optical isolators and circulators
259(2)
10.8.5 Amplitude and phase modulation
261(2)
10.8.6 Polarization-preserving fibers
263(4)
10.8.7 Polarization controller
267(2)
10.9 The physics of rare earth ions in glasses
269(11)
10.10 Some specific fiber lasers
280(7)
10.10.1 Fiber laser resonators
280(3)
10.10.2 Erbium and erbium/ytterbium lasers
283(1)
10.10.3 Neodymium lasers
284(1)
10.10.4 Ytterbium lasers
285(1)
10.10.5 Thulium lasers
286(1)
10.11 Further reading
287(1)
10.12 Problems
287(2)
11 Mode-locked lasers and frequency metrology
289(34)
11.1 Introduction
289(1)
11.2 Theory of mode locking
289(5)
11.3 Mode-locking techniques
294(4)
11.4 Dispersion and its compensation
298(4)
11.5 The mode-locked Ti--sapphire laser
302(3)
11.6 Mode-locked fiber lasers
305(4)
11.7 Frequency metrology using a femtosecond laser
309(4)
11.8 The carrier envelope offset
313(2)
11.9 Comb generation in a microresonator
315(6)
11.10 Further reading
321(1)
11.11 Problems
321(2)
12 Laser frequency stabilization and control systems
323(52)
12.1 Introduction
323(1)
12.2 Laser frequency stabilization -- a first look
323(2)
12.3 The effect of the loop filter
325(1)
12.4 Elementary noise considerations
326(3)
12.5 Some linear system theory
329(4)
12.6 The stability of a linear system
333(2)
12.7 Negative feedback
335(9)
12.8 Some actual control systems
344(6)
12.9 Temperature stabilization
350(4)
12.10 Laser frequency stabilization
354(9)
12.11 Optical-fiber phase noise and its cancellation
363(2)
12.12 Characterization of laser frequency stability
365(6)
12.13 Frequency locking to a noisy resonance
371(2)
12.14 Further reading
373(1)
12.15 Problems
373(2)
13 Atomic and molecular discriminants
375(14)
13.1 Introduction
375(1)
13.2 Sub-Doppler saturation spectroscopy
375(6)
13.3 Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy
381(5)
13.4 An example of a side-of-line atomic discriminant
386(1)
13.5 Further reading
387(1)
13.6 Problems
387(2)
14 Nonlinear optics
389(55)
14.1 Introduction
389(1)
14.2 Anisotropic crystals
389(8)
14.3 Second-harmonic generation
397(5)
14.4 Birefringent phase matching
402(6)
14.5 Quasi-phase matching
408(5)
14.6 Second-harmonic generation using a focused beam
413(7)
14.7 Second-harmonic generation in a cavity
420(5)
14.8 Sum-frequency generation
425(1)
14.9 Periodically poled optical waveguides
426(4)
14.10 Parametric interactions
430(13)
14.11 Further reading
443(1)
14.12 Problems
443(1)
15 Frequency and amplitude modulation
444(22)
15.1 Introduction
444(1)
15.2 The linear electro-optic effect
444(2)
15.3 Bulk electro-optic modulators
446(5)
15.4 Traveling-wave electro-optic modulators
451(1)
15.5 Acousto-optic modulators
452(12)
15.6 Further reading
464(1)
15.7 Problems
464(2)
References 466(5)
Index 471
Following his PhD, Warren Nagourney undertook postdoctoral research at Columbia Radiation Laboratory, Columbia University, New York, after which he joined the physics department of the University of Washington as a Postdoctoral Research Assistant in 1977. He remained with the department until his retirement, as a Research Professor, in 2007.