Preface |
|
xi | |
Notation |
|
xiii | |
|
|
1 | (10) |
|
|
11 | (55) |
|
Parametrized random walks |
|
|
12 | (7) |
|
|
12 | (3) |
|
Universality of the Wiener measure |
|
|
15 | (4) |
|
|
19 | (13) |
|
|
19 | (5) |
|
|
24 | (8) |
|
|
32 | (14) |
|
Curvature-dependent action |
|
|
32 | (2) |
|
|
34 | (2) |
|
|
36 | (5) |
|
The tangent-tangent correlation function |
|
|
41 | (5) |
|
|
46 | (7) |
|
|
53 | (11) |
|
|
53 | (8) |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (83) |
|
|
66 | (2) |
|
The dynamically triangulated random surface model |
|
|
68 | (5) |
|
Triangulations and Regge calculus |
|
|
73 | (5) |
|
Basic properties of the loop functions |
|
|
78 | (26) |
|
Convergence of the loop functions |
|
|
79 | (6) |
|
The susceptibility exponent y |
|
|
85 | (5) |
|
Branched polymer surfaces |
|
|
90 | (5) |
|
|
95 | (5) |
|
|
100 | (2) |
|
Scaling and the continuum limit in the DTRS-model |
|
|
102 | (2) |
|
Random surfaces on a lattice |
|
|
104 | (19) |
|
Definition of the lattice surface model |
|
|
105 | (5) |
|
Mass, susceptibility and string tension |
|
|
110 | (5) |
|
Critical behaviour and continuum limit |
|
|
115 | (8) |
|
|
123 | (12) |
|
|
123 | (2) |
|
Curvature-dependent action |
|
|
125 | (5) |
|
|
130 | (5) |
|
|
135 | (10) |
|
The kinematics of crumpling |
|
|
138 | (5) |
|
A lower bound on the size of crystalline surfaces |
|
|
143 | (2) |
|
|
145 | (4) |
|
|
149 | (102) |
|
|
149 | (5) |
|
The combinatorial solution |
|
|
154 | (19) |
|
|
155 | (5) |
|
|
160 | (5) |
|
|
165 | (2) |
|
|
167 | (4) |
|
|
171 | (2) |
|
Counting higher-genus surfaces |
|
|
173 | (9) |
|
The loop equation for genus h > 0 |
|
|
173 | (2) |
|
Solution of the loop equation for h > 0 |
|
|
175 | (3) |
|
The generating function lh for closed triangulations |
|
|
178 | (3) |
|
The number of triangulations of genus h |
|
|
181 | (1) |
|
|
182 | (7) |
|
Renormalization of the cosmological constant |
|
|
182 | (1) |
|
Continuum results for genus zero |
|
|
183 | (3) |
|
Continuum results for higher-genus surfaces |
|
|
186 | (3) |
|
|
189 | (10) |
|
|
189 | (2) |
|
|
191 | (4) |
|
Connection with conformal field theory |
|
|
195 | (4) |
|
The continuum loop equation |
|
|
199 | (13) |
|
|
212 | (14) |
|
|
212 | (3) |
|
A differential equation for the geodesic two-loop function |
|
|
215 | (5) |
|
Solution of the differential equation |
|
|
220 | (3) |
|
A transfer matrix approach |
|
|
223 | (3) |
|
|
226 | (11) |
|
Counting triangulations using matrix models |
|
|
226 | (4) |
|
|
230 | (3) |
|
Non-perturbative quantum gravity? |
|
|
233 | (1) |
|
|
234 | (3) |
|
More on matter and gravity |
|
|
237 | (10) |
|
Coupling matter fields to gravity |
|
|
237 | (1) |
|
|
238 | (3) |
|
|
241 | (6) |
|
|
247 | (4) |
|
Monte Carlo simulations of random geometry |
|
|
251 | (20) |
|
|
251 | (3) |
|
|
254 | (6) |
|
|
260 | (3) |
|
|
263 | (7) |
|
|
270 | (1) |
|
Gravity in higher dimensions |
|
|
271 | (26) |
|
Basic problems in quantum gravity |
|
|
271 | (4) |
|
Simplicial quantum gravity in dimensions d > 2 |
|
|
275 | (9) |
|
Simplicial complexes and triangulations |
|
|
275 | (3) |
|
|
278 | (4) |
|
Generalized matrix models |
|
|
282 | (2) |
|
Algorithmic recognizability and numerical methods |
|
|
284 | (6) |
|
|
290 | (5) |
|
|
295 | (2) |
|
Topological quantum field theories |
|
|
297 | (42) |
|
|
297 | (1) |
|
|
298 | (5) |
|
|
298 | (3) |
|
|
301 | (2) |
|
|
303 | (7) |
|
|
303 | (4) |
|
|
307 | (3) |
|
Three-dimensional unitary TQFT |
|
|
310 | (27) |
|
TQFT and three-dimensional gravity |
|
|
311 | (6) |
|
|
317 | (6) |
|
Construction in terms of 6j-symbols |
|
|
323 | (14) |
|
|
337 | (2) |
References |
|
339 | (20) |
Index |
|
359 | |