Atnaujinkite slapukų nuostatas

Quantum Geometry: A Statistical Field Theory Approach [Minkštas viršelis]

(University of Iceland, Reykjavik), (University of Copenhagen), (University of Copenhagen)
  • Formatas: Paperback / softback, 380 pages, aukštis x plotis x storis: 245x170x20 mm, weight: 593 g, 73 Line drawings, unspecified
  • Serija: Cambridge Monographs on Mathematical Physics
  • Išleidimo metai: 15-Dec-2005
  • Leidėjas: Cambridge University Press
  • ISBN-10: 052101736X
  • ISBN-13: 9780521017367
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 380 pages, aukštis x plotis x storis: 245x170x20 mm, weight: 593 g, 73 Line drawings, unspecified
  • Serija: Cambridge Monographs on Mathematical Physics
  • Išleidimo metai: 15-Dec-2005
  • Leidėjas: Cambridge University Press
  • ISBN-10: 052101736X
  • ISBN-13: 9780521017367
Kitos knygos pagal šią temą:
Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.

This graduate level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantization of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two-and higher-dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included.

Recenzijos

"It was a pleasure to look through this book. It is apparent that every effort was made to write a complete advanced text on the current status of triangulations in quantum gravity. This book is a must for anyone in this field." E. J. Janse van Rensburg, Mathematical Reviews

Daugiau informacijos

Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.
Preface xi
Notation xiii
Introduction
1(10)
Random walks
11(55)
Parametrized random walks
12(7)
The Wiener measure
12(3)
Universality of the Wiener measure
15(4)
Geometric random walks
19(13)
Embedded random walks
19(5)
Riemannian random walks
24(8)
Rigid random walks
32(14)
Curvature-dependent action
32(2)
The two-point function
34(2)
The scaling limits
36(5)
The tangent-tangent correlation function
41(5)
Fermionic random walks
46(7)
Branched polymers
53(11)
Extrinsic properties
53(8)
Intrinsic properties
61(2)
Generalizations
63(1)
Notes
64(2)
Random surfaces
66(83)
Introduction
66(2)
The dynamically triangulated random surface model
68(5)
Triangulations and Regge calculus
73(5)
Basic properties of the loop functions
78(26)
Convergence of the loop functions
79(6)
The susceptibility exponent y
85(5)
Branched polymer surfaces
90(5)
Mass and string tension
95(5)
The Hausdorff dimension
100(2)
Scaling and the continuum limit in the DTRS-model
102(2)
Random surfaces on a lattice
104(19)
Definition of the lattice surface model
105(5)
Mass, susceptibility and string tension
110(5)
Critical behaviour and continuum limit
115(8)
Rigid surfaces
123(12)
Motivation
123(2)
Curvature-dependent action
125(5)
The crumpling transition
130(5)
Crystalline surfaces
135(10)
The kinematics of crumpling
138(5)
A lower bound on the size of crystalline surfaces
143(2)
Notes
145(4)
Two-dimensional gravity
149(102)
The continuum formalism
149(5)
The combinatorial solution
154(19)
Regularization
155(5)
Counting planar graphs
160(5)
Generalization
165(2)
An easy example
167(4)
The general model
171(2)
Counting higher-genus surfaces
173(9)
The loop equation for genus h > 0
173(2)
Solution of the loop equation for h > 0
175(3)
The generating function lh for closed triangulations
178(3)
The number of triangulations of genus h
181(1)
The continuum limit
182(7)
Renormalization of the cosmological constant
182(1)
Continuum results for genus zero
183(3)
Continuum results for higher-genus surfaces
186(3)
Multi-critical models
189(10)
General considerations
189(2)
The dimer model
191(4)
Connection with conformal field theory
195(4)
The continuum loop equation
199(13)
The two-point function
212(14)
General considerations
212(3)
A differential equation for the geodesic two-loop function
215(5)
Solution of the differential equation
220(3)
A transfer matrix approach
223(3)
Matrix models
226(11)
Counting triangulations using matrix models
226(4)
The loop equations
230(3)
Non-perturbative quantum gravity?
233(1)
The Kontsevich model
234(3)
More on matter and gravity
237(10)
Coupling matter fields to gravity
237(1)
The Ising model
238(3)
Multiple-spin systems
241(6)
Notes
247(4)
Monte Carlo simulations of random geometry
251(20)
Basic principles
251(3)
Updating geometry
254(6)
Finite-size scaling
260(3)
Two-dimensional geometry
263(7)
Notes
270(1)
Gravity in higher dimensions
271(26)
Basic problems in quantum gravity
271(4)
Simplicial quantum gravity in dimensions d > 2
275(9)
Simplicial complexes and triangulations
275(3)
The metric structure
278(4)
Generalized matrix models
282(2)
Algorithmic recognizability and numerical methods
284(6)
Numerical results
290(5)
Notes
295(2)
Topological quantum field theories
297(42)
Introduction
297(1)
Generalities
298(5)
The axioms
298(3)
Some properties of TQFTs
301(2)
Two-dimensional TQFT
303(7)
TQFT on triangulations
303(4)
The unitary case
307(3)
Three-dimensional unitary TQFT
310(27)
TQFT and three-dimensional gravity
311(6)
The discrete framework
317(6)
Construction in terms of 6j-symbols
323(14)
Notes
337(2)
References 339(20)
Index 359