Atnaujinkite slapukų nuostatas

El. knyga: Quantum Groups

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 155
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461207832
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 155
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461207832

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Daugiau informacijos

Springer Book Archives
Preface v
Part One Quantum SL(2) 1(164)
I Preliminaries
3(20)
1 Algebras and Modules
3(4)
2 Free Algebras
7(1)
3 The Affine Line and Plane
8(2)
4 Matrix Multiplication
10(1)
5 Determinants and Invertible Matrices
10(2)
6 Graded and Filtered Algebras
12(2)
7 Ore Extensions
14(4)
8 Noetherian Rings
18(2)
9 Exercises
20(2)
10 Notes
22(1)
II Tensor Products
23(16)
1 Tensor Products of Vector Spaces
23(3)
2 Tensor Products of Linear Maps
26(3)
3 Duality and Traces
29(3)
4 Tensor Products of Algebras
32(2)
5 Tensor and Symmetric Algebras
34(2)
6 Exercises
36(2)
7 Notes
38(1)
III The Language of Hopf Algebras
39(33)
1 Coalgebras
39(6)
2 Bialgebras
45(4)
3 Hopf Algebras
49(8)
4 Relationship with
Chapter I. The Hopf Algebras GL(2) and SL(2)
57(1)
5 Modules over a Hopf Algebra
57(4)
6 Comodules
61(3)
7 Comodule-Algebras. Coaction of SL(2) on the Affine Plane
64(2)
8 Exercises
66(4)
9 Notes
70(2)
IV The Quantum Plane and Its Symmetries
72(21)
1 The Quantum Plane
72(2)
2 Gauss Polynomials and the q-Binomial Formula
74(3)
3 The Algebra Mq(2)
77(4)
4 Ring-Theoretical Properties of Mq(2)
81(1)
5 Bialgebra Structure on Mq(2)
82(1)
6 The Hopf Algebras GLq(2) and SLq(2)
83(2)
7 Coaction on the Quantum Plane
85(1)
8 Hopf *-Algebras
86(2)
9 Exercises
88(2)
10 Notes
90(3)
V The Lie Algebra of SL(2)
93(28)
1 Lie Algebras
93(1)
2 Enveloping Algebras
94(5)
3 The Lie Algebra sl(2)
99(2)
4 Representations of sl(2)
101(4)
5 The Clebsch-Gordan Formula
105(2)
6 Module-Algebra over a Bialgebra. Action of sl(2) on the Affine Plane
107(2)
7 Duality between the Hopf Algebras U(sl(2)) and SL(2)
109(8)
8 Exercises
117(2)
9 Notes
119(2)
VI The Quantum Enveloping Algebra of sl(2)
121(19)
1 The Algebra Uq(sl(2))
121(4)
2 Relationship with the Enveloping Algebra of sl(2)
125(2)
3 Representations of Uq
127(3)
4 The Harish-Chandra Homomorphism and the Centre of Uq
130(4)
5 Case when q is a Root of Unity
134(4)
6 Exercises
138(1)
7 Notes
138(2)
VII A Hopf Algebra Structure on Uq(sl(2))
140(25)
1 Comultiplication
140(3)
2 Semisimplicity
143(3)
3 Action of Uq(sl(2)) on the Quantum Plane
146(4)
4 Duality between the Hopf Algebras Uq(sl(2)) and SLq(2)
150(4)
5 Duality between Uq(sl(2))-Modules and SLq(2)-Comodules
154(1)
6 Scalar Products on Uq(sl(2))-Modules
155(2)
7 Quantum Clebsch-Gordan
157(5)
8 Exercises
162(1)
9 Notes
163(2)
Part Two Universal R-Matrices 165(74)
VIII The Yang-Baxter Equation and (Co)Braided Bialgebras
167(32)
1 The Yang-Baxter Equation
167(5)
2 Braided Bialgebras
172(6)
3 How a Braided Bialgebra Generates R-Matrices
178(1)
4 The Square of the Antipode in a Braided Hopf Algebra
179(5)
5 A Dual Concept: Cobraided Bialgebras
184(4)
6 The FRT Construction
188(6)
7 Application to GLq(2) and SLq(2)
194(2)
8 Exercises
196(2)
9 Notes
198(1)
IX Drinfeld's Quantum Double
199(40)
1 Bicrossed Products of Groups
199(3)
2 Bicrossed Products of Bialgebras
202(5)
3 Variations on the Adjoint Representation
207(6)
4 Drinfeld's Quantum Double
213(7)
5 Representation-Theoretic Interpretation of the Quantum Double
220(3)
6 Application to Uq(sl(2))
223(7)
7 R-Matrices for Uq
230(6)
8 Exercises
236(2)
9 Notes
238(1)
Part Three Low-Dimensional Topology and Tensor Categories 239(144)
X Knots, Links, Tangles, and Braids
241(34)
1 Knots and Links
242(2)
2 Classification of Links up to Isotopy
244(2)
3 Link Diagrams
246(6)
4 The Jones-Conway Polynomial
252(5)
5 Tangles
257(5)
6 Braids
262(7)
7 Exercises
269(1)
8 Notes
270(3)
9 Appendix. The Fundamental Group
273(2)
XI Tensor Categories
275(19)
1 The Language of Categories and Functors
275(6)
2 Tensor Categories
281(3)
3 Examples of Tensor Categories
284(3)
4 Tensor Functors
287(1)
5 Turning Tensor Categories into Strict Ones
288(3)
6 Exercises
291(2)
7 Notes
293(1)
XII The Tangle Category
294(20)
1 Presentation of a Strict Tensor Category
294(5)
2 The Category of Tangles
299(3)
3 The Category of Tangle Diagrams
302(3)
4 Representations of the Category of Tangles
305(6)
5 Existence Proof for Jones-Conway Polynomial
311(2)
6 Exercises
313(1)
7 Notes
313(1)
XIII Braidings
314(25)
1 Braided Tensor Categories
314(7)
2 The Braid Category
321(1)
3 Universality of the Braid Category
322(8)
4 The Centre Construction
330(3)
5 A Categorical Interpretation of the Quantum Double
333(4)
6 Exercises
337(1)
7 Notes
338(1)
XIV Duality in Tensor Categories
339(29)
1 Representing Morphisms in a Tensor Category
339(3)
2 Duality
342(6)
3 Ribbon Categories
348(6)
4 Quantum Trace and Dimension
354(4)
5 Examples of Ribbon Categories
358(3)
6 Ribbon Algebras
361(4)
7 Exercises
365(1)
8 Notes
366(2)
XV Quasi-Bialgebras
368(15)
1 Quasi-Bialgebras
368(3)
2 Braided Quasi-Bialgebras
371(1)
3 Gauge Transformations
372(5)
4 Braid Group Representations
377(2)
5 Quasi-Hopf Algebras
379(2)
6 Exercises
381(1)
7 Notes
381(2)
Part Four Quantum Groups and Monodromy 383(123)
XVI Generalities on Quantum Enveloping Algebras
385(18)
1 The Ring of Formal Series and h-Adic Topology
385(3)
2 Topologically Free Modules
388(2)
3 Topological Tensor Product
390(2)
4 Topological Algebras
392(3)
5 Quantum Enveloping Algebras
395(3)
6 Symmetrizing the Universal R-Matrix
398(2)
7 Exercises
400(1)
8 Notes
401(1)
9 Appendix. Inverse Limits
401(2)
XVII Drinfeld and Jimbo's Quantum Enveloping Algebras
403(17)
1 Semisimple Lie Algebras
403(3)
2 Drinfeld-Jimbo Algebras
406(4)
3 Quantum Group Invariants of Links
410(2)
4 The Case of sl(2)
412(6)
5 Exercises
418(1)
6 Notes
418(2)
XVIII Cohomology and Rigidity Theorems
420(29)
1 Cohomology of Lie Algebras
420(4)
2 Rigidity for Lie Algebras
424(3)
3 Vanishing Results for Semisimple Lie Algebras
427(3)
4 Application to Drinfeld-Jimbo Quantum Enveloping Algebras
430(1)
5 Cohomology of Coalgebras
431(3)
6 Action of a Semisimple Lie Algebra on the Cobar Complex
434(1)
7 Computations for Symmetric Coalgebras
435(7)
8 Uniqueness Theorem for Quantum Enveloping Algebras
442(4)
9 Exercises
446(1)
10 Notes
446(1)
11 Appendix. Complexes and Resolutions
447(2)
XIX Monodromy of the Knizhnik-Zamolodchikov Equations
449(35)
1 Connections
449(2)
2 Braid Group Representations from Monodromy
451(4)
3 The Knizhnik-Zamolodchikov Equations
455(3)
4 The Drinfeld-Kohno Theorem
458(3)
5 Equivalence of Uh(g) and Ag,t
461(2)
6 Drinfeld's Associator
463(5)
7 Construction of the Topological Braided Quasi-Bialgebra Ag,t
468(3)
8 Verification of the Axioms
471(8)
9 Exercises
479(1)
10 Notes
479(1)
11 Appendix. Iterated Integrals
480(4)
XX Postlude. A Universal Knot Invariant
484(22)
1 Knot Invariants of Finite Type
484(2)
2 Chord Diagrams and Kontsevich's Theorem
486(5)
3 Algebra Structures on Chord Diagrams
491(3)
4 Infinitesimal Symmetric Categories
494(2)
5 A Universal Category for Infinitesimal Braidings
496(2)
6 Formal Integration of Infinitesimal Symmetric Categories
498(1)
7 Construction of Kontsevich's Universal Invariant
499(3)
8 Recovering Quantum Group Invariants
502(3)
9 Exercises
505(1)
10 Notes
505(1)
References 506(17)
Index 523