Preface |
|
v | |
Part One Quantum SL(2) |
|
1 | (164) |
|
|
3 | (20) |
|
|
3 | (4) |
|
|
7 | (1) |
|
3 The Affine Line and Plane |
|
|
8 | (2) |
|
|
10 | (1) |
|
5 Determinants and Invertible Matrices |
|
|
10 | (2) |
|
6 Graded and Filtered Algebras |
|
|
12 | (2) |
|
|
14 | (4) |
|
|
18 | (2) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (16) |
|
1 Tensor Products of Vector Spaces |
|
|
23 | (3) |
|
2 Tensor Products of Linear Maps |
|
|
26 | (3) |
|
|
29 | (3) |
|
4 Tensor Products of Algebras |
|
|
32 | (2) |
|
5 Tensor and Symmetric Algebras |
|
|
34 | (2) |
|
|
36 | (2) |
|
|
38 | (1) |
|
III The Language of Hopf Algebras |
|
|
39 | (33) |
|
|
39 | (6) |
|
|
45 | (4) |
|
|
49 | (8) |
|
4 Relationship with Chapter I. The Hopf Algebras GL(2) and SL(2) |
|
|
57 | (1) |
|
5 Modules over a Hopf Algebra |
|
|
57 | (4) |
|
|
61 | (3) |
|
7 Comodule-Algebras. Coaction of SL(2) on the Affine Plane |
|
|
64 | (2) |
|
|
66 | (4) |
|
|
70 | (2) |
|
IV The Quantum Plane and Its Symmetries |
|
|
72 | (21) |
|
|
72 | (2) |
|
2 Gauss Polynomials and the q-Binomial Formula |
|
|
74 | (3) |
|
|
77 | (4) |
|
4 Ring-Theoretical Properties of Mq(2) |
|
|
81 | (1) |
|
5 Bialgebra Structure on Mq(2) |
|
|
82 | (1) |
|
6 The Hopf Algebras GLq(2) and SLq(2) |
|
|
83 | (2) |
|
7 Coaction on the Quantum Plane |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (2) |
|
|
90 | (3) |
|
V The Lie Algebra of SL(2) |
|
|
93 | (28) |
|
|
93 | (1) |
|
|
94 | (5) |
|
|
99 | (2) |
|
4 Representations of sl(2) |
|
|
101 | (4) |
|
5 The Clebsch-Gordan Formula |
|
|
105 | (2) |
|
6 Module-Algebra over a Bialgebra. Action of sl(2) on the Affine Plane |
|
|
107 | (2) |
|
7 Duality between the Hopf Algebras U(sl(2)) and SL(2) |
|
|
109 | (8) |
|
|
117 | (2) |
|
|
119 | (2) |
|
VI The Quantum Enveloping Algebra of sl(2) |
|
|
121 | (19) |
|
|
121 | (4) |
|
2 Relationship with the Enveloping Algebra of sl(2) |
|
|
125 | (2) |
|
|
127 | (3) |
|
4 The Harish-Chandra Homomorphism and the Centre of Uq |
|
|
130 | (4) |
|
5 Case when q is a Root of Unity |
|
|
134 | (4) |
|
|
138 | (1) |
|
|
138 | (2) |
|
VII A Hopf Algebra Structure on Uq(sl(2)) |
|
|
140 | (25) |
|
|
140 | (3) |
|
|
143 | (3) |
|
3 Action of Uq(sl(2)) on the Quantum Plane |
|
|
146 | (4) |
|
4 Duality between the Hopf Algebras Uq(sl(2)) and SLq(2) |
|
|
150 | (4) |
|
5 Duality between Uq(sl(2))-Modules and SLq(2)-Comodules |
|
|
154 | (1) |
|
6 Scalar Products on Uq(sl(2))-Modules |
|
|
155 | (2) |
|
|
157 | (5) |
|
|
162 | (1) |
|
|
163 | (2) |
Part Two Universal R-Matrices |
|
165 | (74) |
|
VIII The Yang-Baxter Equation and (Co)Braided Bialgebras |
|
|
167 | (32) |
|
1 The Yang-Baxter Equation |
|
|
167 | (5) |
|
|
172 | (6) |
|
3 How a Braided Bialgebra Generates R-Matrices |
|
|
178 | (1) |
|
4 The Square of the Antipode in a Braided Hopf Algebra |
|
|
179 | (5) |
|
5 A Dual Concept: Cobraided Bialgebras |
|
|
184 | (4) |
|
|
188 | (6) |
|
7 Application to GLq(2) and SLq(2) |
|
|
194 | (2) |
|
|
196 | (2) |
|
|
198 | (1) |
|
IX Drinfeld's Quantum Double |
|
|
199 | (40) |
|
1 Bicrossed Products of Groups |
|
|
199 | (3) |
|
2 Bicrossed Products of Bialgebras |
|
|
202 | (5) |
|
3 Variations on the Adjoint Representation |
|
|
207 | (6) |
|
4 Drinfeld's Quantum Double |
|
|
213 | (7) |
|
5 Representation-Theoretic Interpretation of the Quantum Double |
|
|
220 | (3) |
|
6 Application to Uq(sl(2)) |
|
|
223 | (7) |
|
|
230 | (6) |
|
|
236 | (2) |
|
|
238 | (1) |
Part Three Low-Dimensional Topology and Tensor Categories |
|
239 | (144) |
|
X Knots, Links, Tangles, and Braids |
|
|
241 | (34) |
|
|
242 | (2) |
|
2 Classification of Links up to Isotopy |
|
|
244 | (2) |
|
|
246 | (6) |
|
4 The Jones-Conway Polynomial |
|
|
252 | (5) |
|
|
257 | (5) |
|
|
262 | (7) |
|
|
269 | (1) |
|
|
270 | (3) |
|
9 Appendix. The Fundamental Group |
|
|
273 | (2) |
|
|
275 | (19) |
|
1 The Language of Categories and Functors |
|
|
275 | (6) |
|
|
281 | (3) |
|
3 Examples of Tensor Categories |
|
|
284 | (3) |
|
|
287 | (1) |
|
5 Turning Tensor Categories into Strict Ones |
|
|
288 | (3) |
|
|
291 | (2) |
|
|
293 | (1) |
|
|
294 | (20) |
|
1 Presentation of a Strict Tensor Category |
|
|
294 | (5) |
|
2 The Category of Tangles |
|
|
299 | (3) |
|
3 The Category of Tangle Diagrams |
|
|
302 | (3) |
|
4 Representations of the Category of Tangles |
|
|
305 | (6) |
|
5 Existence Proof for Jones-Conway Polynomial |
|
|
311 | (2) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (25) |
|
1 Braided Tensor Categories |
|
|
314 | (7) |
|
|
321 | (1) |
|
3 Universality of the Braid Category |
|
|
322 | (8) |
|
4 The Centre Construction |
|
|
330 | (3) |
|
5 A Categorical Interpretation of the Quantum Double |
|
|
333 | (4) |
|
|
337 | (1) |
|
|
338 | (1) |
|
XIV Duality in Tensor Categories |
|
|
339 | (29) |
|
1 Representing Morphisms in a Tensor Category |
|
|
339 | (3) |
|
|
342 | (6) |
|
|
348 | (6) |
|
4 Quantum Trace and Dimension |
|
|
354 | (4) |
|
5 Examples of Ribbon Categories |
|
|
358 | (3) |
|
|
361 | (4) |
|
|
365 | (1) |
|
|
366 | (2) |
|
|
368 | (15) |
|
|
368 | (3) |
|
2 Braided Quasi-Bialgebras |
|
|
371 | (1) |
|
|
372 | (5) |
|
4 Braid Group Representations |
|
|
377 | (2) |
|
|
379 | (2) |
|
|
381 | (1) |
|
|
381 | (2) |
Part Four Quantum Groups and Monodromy |
|
383 | (123) |
|
XVI Generalities on Quantum Enveloping Algebras |
|
|
385 | (18) |
|
1 The Ring of Formal Series and h-Adic Topology |
|
|
385 | (3) |
|
2 Topologically Free Modules |
|
|
388 | (2) |
|
3 Topological Tensor Product |
|
|
390 | (2) |
|
|
392 | (3) |
|
5 Quantum Enveloping Algebras |
|
|
395 | (3) |
|
6 Symmetrizing the Universal R-Matrix |
|
|
398 | (2) |
|
|
400 | (1) |
|
|
401 | (1) |
|
9 Appendix. Inverse Limits |
|
|
401 | (2) |
|
XVII Drinfeld and Jimbo's Quantum Enveloping Algebras |
|
|
403 | (17) |
|
1 Semisimple Lie Algebras |
|
|
403 | (3) |
|
2 Drinfeld-Jimbo Algebras |
|
|
406 | (4) |
|
3 Quantum Group Invariants of Links |
|
|
410 | (2) |
|
|
412 | (6) |
|
|
418 | (1) |
|
|
418 | (2) |
|
XVIII Cohomology and Rigidity Theorems |
|
|
420 | (29) |
|
1 Cohomology of Lie Algebras |
|
|
420 | (4) |
|
2 Rigidity for Lie Algebras |
|
|
424 | (3) |
|
3 Vanishing Results for Semisimple Lie Algebras |
|
|
427 | (3) |
|
4 Application to Drinfeld-Jimbo Quantum Enveloping Algebras |
|
|
430 | (1) |
|
5 Cohomology of Coalgebras |
|
|
431 | (3) |
|
6 Action of a Semisimple Lie Algebra on the Cobar Complex |
|
|
434 | (1) |
|
7 Computations for Symmetric Coalgebras |
|
|
435 | (7) |
|
8 Uniqueness Theorem for Quantum Enveloping Algebras |
|
|
442 | (4) |
|
|
446 | (1) |
|
|
446 | (1) |
|
11 Appendix. Complexes and Resolutions |
|
|
447 | (2) |
|
XIX Monodromy of the Knizhnik-Zamolodchikov Equations |
|
|
449 | (35) |
|
|
449 | (2) |
|
2 Braid Group Representations from Monodromy |
|
|
451 | (4) |
|
3 The Knizhnik-Zamolodchikov Equations |
|
|
455 | (3) |
|
4 The Drinfeld-Kohno Theorem |
|
|
458 | (3) |
|
5 Equivalence of Uh(g) and Ag,t |
|
|
461 | (2) |
|
|
463 | (5) |
|
7 Construction of the Topological Braided Quasi-Bialgebra Ag,t |
|
|
468 | (3) |
|
8 Verification of the Axioms |
|
|
471 | (8) |
|
|
479 | (1) |
|
|
479 | (1) |
|
11 Appendix. Iterated Integrals |
|
|
480 | (4) |
|
XX Postlude. A Universal Knot Invariant |
|
|
484 | (22) |
|
1 Knot Invariants of Finite Type |
|
|
484 | (2) |
|
2 Chord Diagrams and Kontsevich's Theorem |
|
|
486 | (5) |
|
3 Algebra Structures on Chord Diagrams |
|
|
491 | (3) |
|
4 Infinitesimal Symmetric Categories |
|
|
494 | (2) |
|
5 A Universal Category for Infinitesimal Braidings |
|
|
496 | (2) |
|
6 Formal Integration of Infinitesimal Symmetric Categories |
|
|
498 | (1) |
|
7 Construction of Kontsevich's Universal Invariant |
|
|
499 | (3) |
|
8 Recovering Quantum Group Invariants |
|
|
502 | (3) |
|
|
505 | (1) |
|
|
505 | (1) |
References |
|
506 | (17) |
Index |
|
523 | |