Introduction |
|
1 | (14) |
|
Part I Towards Topological Field Theory |
|
|
15 | (284) |
|
Chapter I Invariants of graphs in Euclidean 3-space |
|
|
17 | (55) |
|
|
17 | (13) |
|
2 Operator invariants of ribbon graphs |
|
|
30 | (19) |
|
3 Reduction of Theorem 2.5 to lemmas |
|
|
49 | (8) |
|
|
57 | (14) |
|
|
71 | (1) |
|
Chapter II Invariants of closed 3-manifolds |
|
|
72 | (46) |
|
1 Modular tensor categories |
|
|
72 | (6) |
|
2 Invariants of 3-manifolds |
|
|
78 | (6) |
|
3 Proof of Theorem 2.3.2. Action of SL (2, Z) |
|
|
84 | (15) |
|
4 Computations in semisimple categories |
|
|
99 | (9) |
|
5 Hermitian and unitary categories |
|
|
108 | (8) |
|
|
116 | (2) |
|
Chapter III Foundations of topological quantum field theory |
|
|
118 | (34) |
|
1 Axiomatic definition of TQFT's |
|
|
118 | (9) |
|
|
127 | (5) |
|
|
132 | (4) |
|
|
136 | (6) |
|
5 Hermitian and unitary TQFT's |
|
|
142 | (3) |
|
6 Elimination of anomalies |
|
|
145 | (5) |
|
|
150 | (2) |
|
Chapter IV Three-dimensional topological quantum field theory |
|
|
152 | (84) |
|
1 Three-dimensional TQFT: preliminary version |
|
|
152 | (10) |
|
|
162 | (17) |
|
3 Lagrangian relations and Maslov indices |
|
|
179 | (7) |
|
4 Computation of anomalies |
|
|
186 | (4) |
|
5 Action of the modular groupoid |
|
|
190 | (6) |
|
6 Renormalized 3-dimensional TQFT |
|
|
196 | (11) |
|
7 Computations in the renormalized TQFT |
|
|
207 | (3) |
|
8 Absolute anomaly-free TQFT |
|
|
210 | (3) |
|
|
213 | (4) |
|
|
217 | (6) |
|
|
223 | (3) |
|
|
226 | (8) |
|
|
234 | (2) |
|
Chapter V Two-dimensional modular functors |
|
|
236 | (63) |
|
1 Axioms for a 2-dimensional modular functor |
|
|
236 | (11) |
|
2 Underlying ribbon category |
|
|
247 | (19) |
|
3 Weak and mirror modular functors |
|
|
266 | (2) |
|
4 Construction of modular functors |
|
|
268 | (6) |
|
5 Construction of modular functors continued |
|
|
274 | (23) |
|
|
297 | (2) |
|
|
299 | (192) |
|
|
301 | (44) |
|
1 Algebraic approach to 6j -symbols |
|
|
301 | (9) |
|
|
310 | (2) |
|
3 Symmetrized multiplicity modules |
|
|
312 | (6) |
|
|
318 | (13) |
|
5 Geometric approach to 6j -symbols |
|
|
331 | (13) |
|
|
344 | (1) |
|
Chapter VII Simplicial state sums on 3-manifolds |
|
|
345 | (22) |
|
1 State sum models on triangulated 3-manifolds |
|
|
345 | (6) |
|
2 Proof of Theorems 1.4 and 1.7 |
|
|
351 | (5) |
|
3 Simplicial 3-dimensional TQFT |
|
|
356 | (5) |
|
4 Comparison of two approaches |
|
|
361 | (4) |
|
|
365 | (2) |
|
Chapter VIII Generalities on shadows |
|
|
367 | (27) |
|
|
367 | (4) |
|
2 Miscellaneous definitions and constructions |
|
|
371 | (5) |
|
|
376 | (6) |
|
|
382 | (4) |
|
5 Bilinear forms of shadows |
|
|
386 | (2) |
|
|
388 | (3) |
|
|
391 | (2) |
|
|
393 | (1) |
|
Chapter IX Shadows of manifolds |
|
|
394 | (41) |
|
|
394 | (6) |
|
|
400 | (5) |
|
3 Shadows of links in 3-manifolds |
|
|
405 | (5) |
|
4 Shadows of 4-manifolds via handle decompositions |
|
|
410 | (3) |
|
5 Comparison of bilinear forms |
|
|
413 | (4) |
|
|
417 | (10) |
|
7 Proof of Theorems 1.5 and 1.7-1.11 |
|
|
427 | (4) |
|
8 Shadows of framed graphs |
|
|
431 | (3) |
|
|
434 | (1) |
|
Chapter X State sums on shadows |
|
|
435 | (56) |
|
1 State sum models on shadowed polyhedra |
|
|
435 | (9) |
|
2 State sum invariants of shadows |
|
|
444 | (6) |
|
3 Invariants of 3-manifolds from the shadow viewpoint |
|
|
450 | (2) |
|
4 Reduction of Theorem 3.3 to a lemma |
|
|
452 | (3) |
|
5 Passage to the shadow world |
|
|
455 | (8) |
|
|
463 | (10) |
|
7 Invariants of framed graphs from the shadow viewpoint |
|
|
473 | (4) |
|
8 Proof of Theorem VII.4.2 |
|
|
477 | (7) |
|
9 Computations for graph manifolds |
|
|
484 | (5) |
|
|
489 | (2) |
|
Part III Towards Modular Categories |
|
|
491 | (70) |
|
Chapter XI An algebraic construction of modular categories |
|
|
493 | (25) |
|
1 Hopf algebras and categories of representations |
|
|
493 | (3) |
|
2 Quasitriangular Hopf algebras |
|
|
496 | (4) |
|
|
500 | (3) |
|
4 Digression on quasimodular categories |
|
|
503 | (3) |
|
|
506 | (2) |
|
6 Quantum groups at roots of unity |
|
|
508 | (5) |
|
7 Quantum groups with generic parameter |
|
|
513 | (4) |
|
|
517 | (1) |
|
Chapter XII A geometric construction of modular categories |
|
|
518 | (43) |
|
1 Skein modules and the Jones polynomial |
|
|
518 | (5) |
|
|
523 | (3) |
|
3 The Temperley-Lieb algebra |
|
|
526 | (3) |
|
4 The Jones-Wenzl idempotents |
|
|
529 | (6) |
|
|
535 | (4) |
|
|
539 | (7) |
|
7 Modular and semisimple skein categories |
|
|
546 | (5) |
|
|
551 | (6) |
|
9 Hermitian and unitary skein categories |
|
|
557 | (2) |
|
|
559 | (2) |
Appendix I Dimension and trace re-examined |
|
561 | (2) |
Appendix II Vertex models on link diagrams |
|
563 | (2) |
Appendix III Gluing re-examined |
|
565 | (3) |
Appendix IV The signature of closed 4-manifolds from a state sum |
|
568 | (3) |
References |
|
571 | (18) |
Subject index |
|
589 | |