Preface |
|
xiii | |
About the Authors |
|
xvii | |
|
|
1 | (32) |
|
|
1 | (1) |
|
1.2 Why Quantum Field Theory? |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.4 Classical Field Theory |
|
|
3 | (4) |
|
1.5 Quantum Equations for Fields |
|
|
7 | (1) |
|
1.6 Quantization of Nonrelativistic Wave Equation |
|
|
8 | (4) |
|
1.7 Electromagnetic Field in Vacuum |
|
|
12 | (5) |
|
1.8 Interaction of Charged Particles with Electromagnetic Field |
|
|
17 | (3) |
|
1.9 Quantization of Klein-Gordon Equation |
|
|
20 | (5) |
|
1.10 Quantization of Dirac Field |
|
|
25 | (2) |
|
1.11 Gauge Field Theories |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (3) |
|
2 Path Integral Formulation |
|
|
33 | (18) |
|
|
33 | (1) |
|
2.2 Time Evolution of Wave Function and Propagator |
|
|
34 | (1) |
|
2.3 Path Integral Representation of Propagator |
|
|
35 | (1) |
|
2.4 Connection Between Propagator and Classical Action |
|
|
36 | (3) |
|
2.5 Schrodinger Equation From Path Integral Formulation |
|
|
39 | (1) |
|
2.6 Transition Amplitude of a Free Particle |
|
|
40 | (2) |
|
2.7 Systems with Quadratic Lagrangian |
|
|
42 | (6) |
|
2.8 Path Integral Version of Ehrenfest's Theorem |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
3 Supersyrnmetric Quantum Mechanics |
|
|
51 | (24) |
|
|
51 | (1) |
|
3.2 Supersyrnmetric Potentials |
|
|
52 | (6) |
|
3.3 Relations Between the Eigenstates of Two Supersyrnmetric Hamiltonians |
|
|
58 | (3) |
|
3.4 Hierarchy of Supersyrnmetric Hamiltonians |
|
|
61 | (1) |
|
|
62 | (4) |
|
3.6 Generation of Complex Potentials with Real Eigenvalues |
|
|
66 | (5) |
|
|
71 | (1) |
|
|
71 | (2) |
|
|
73 | (2) |
|
4 Coherent and Squeezed States |
|
|
75 | (30) |
|
|
75 | (1) |
|
4.2 The Uncertainty Product of Harmonic Oscillator |
|
|
76 | (2) |
|
4.3 Coherent States: Definition, Uncertainty Product and Physical Meaning |
|
|
78 | (2) |
|
4.4 Generation and Properties of Coherent States |
|
|
80 | (6) |
|
|
86 | (1) |
|
4.6 Coherent States of Position-Dependent Mass Systems |
|
|
87 | (2) |
|
|
89 | (5) |
|
4.8 Deformed Oscillators and Nonlinear Coherent States |
|
|
94 | (4) |
|
|
98 | (1) |
|
|
98 | (4) |
|
|
102 | (3) |
|
5 Berry's Phase, Aharonov-Bohm and Sagnac Effects |
|
|
105 | (26) |
|
|
105 | (1) |
|
5.2 Derivation of Berry's Phase |
|
|
106 | (2) |
|
5.3 Origin and Properties of Berry's Phase |
|
|
108 | (1) |
|
5.4 Classical Analogue of Berry's Phase |
|
|
109 | (2) |
|
5.5 Berry's Phase in Solid State Physics |
|
|
111 | (2) |
|
5.6 Examples and Effects of Berry's Phase |
|
|
113 | (1) |
|
5.7 Applications of Berry's Phase |
|
|
114 | (2) |
|
5.8 Experimental Verification of Berry's Phase |
|
|
116 | (1) |
|
|
117 | (1) |
|
5.10 Cumulants Associated with Geometric Phases |
|
|
118 | (1) |
|
5.11 The Aharonov-Bohm Effect |
|
|
119 | (4) |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (2) |
|
6 Phase Space Picture and Canonical Transformations |
|
|
131 | (20) |
|
|
131 | (1) |
|
6.2 Squeeze and Rotation in Phase Space |
|
|
132 | (2) |
|
6.3 Linear Canonical Transformations |
|
|
134 | (1) |
|
|
135 | (4) |
|
6.5 Time Evolution of the Wigner Function |
|
|
139 | (3) |
|
|
142 | (4) |
|
6.7 Advantages of the Wigner Function |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (28) |
|
|
151 | (1) |
|
7.2 States in Classical Mechanics |
|
|
152 | (1) |
|
7.3 Quantum Entangled States |
|
|
153 | (3) |
|
|
156 | (2) |
|
|
158 | (3) |
|
7.6 Separability Criteria |
|
|
161 | (4) |
|
7.7 Multipartite Entanglement |
|
|
165 | (1) |
|
7.8 Quantifying Entanglement |
|
|
166 | (5) |
|
7.9 Applications of Entanglement |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
174 | (3) |
|
|
177 | (2) |
|
|
179 | (22) |
|
|
179 | (1) |
|
8.2 Decoherence and Interference Damping |
|
|
180 | (1) |
|
8.3 Interaction of a Detector on the Double-Slit Experiment |
|
|
181 | (1) |
|
8.4 Decoherence Due to Phase Randomization |
|
|
182 | (3) |
|
8.5 Position Decoherence Due to Environmental Scattering |
|
|
185 | (2) |
|
|
187 | (4) |
|
|
191 | (1) |
|
8.8 Decoherence Experiments |
|
|
192 | (3) |
|
8.9 The Role of Decoherence in the Interpretation of Quantum Mechanics |
|
|
195 | (3) |
|
|
198 | (1) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (28) |
|
|
201 | (1) |
|
9.2 What is a Quantum Computer? |
|
|
201 | (3) |
|
9.3 Why is a Quantum Computer? |
|
|
204 | (1) |
|
9.4 Fundamental Properties |
|
|
205 | (8) |
|
|
213 | (7) |
|
9.6 Testing Quantum Computers Using Grover's Algorithm |
|
|
220 | (1) |
|
9.7 Features of Quantum Computation |
|
|
221 | (1) |
|
9.8 Quantum Computation Through NMR |
|
|
221 | (1) |
|
9.9 Why is Making a Quantum Computer Extremely Difficult? |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (2) |
|
|
225 | (4) |
|
|
229 | (22) |
|
|
229 | (1) |
|
10.2 Standard Cryptosystems |
|
|
229 | (2) |
|
10.3 Quantum Cryptography-Basic Principle |
|
|
231 | (2) |
|
10.4 Types of Quantum Cryptography |
|
|
233 | (6) |
|
10.5 Multiparty Quantum Secret Sharing |
|
|
239 | (2) |
|
10.6 Applications of Quantum Cryptography |
|
|
241 | (1) |
|
10.7 Implementation and Limitations |
|
|
242 | (1) |
|
10.8 Fiber-Optical Quantum Key Distribution |
|
|
243 | (1) |
|
10.9 Quantum Cheque Scheme |
|
|
243 | (3) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
248 | (3) |
|
11 No-Cloning Theorem and Quantum Cloning Machines |
|
|
251 | (16) |
|
|
251 | (1) |
|
11.2 Proof of No-Cloning Theorem |
|
|
251 | (2) |
|
11.3 No-Broadcasting Theorem |
|
|
253 | (2) |
|
11.4 No-Cloning and No-Superluminar Signalling |
|
|
255 | (1) |
|
11.5 Quantum Cloning Machines |
|
|
256 | (5) |
|
|
261 | (2) |
|
11.7 Other No-Go Theorems |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (20) |
|
|
267 | (1) |
|
|
268 | (2) |
|
12.3 Recovery of Density Matrix from Wigner Function |
|
|
270 | (3) |
|
12.4 Optical Homodyne Tomography |
|
|
273 | (1) |
|
12.5 Qubit Quantum Tomography |
|
|
274 | (3) |
|
12.6 Experimental Measure of Polarization of a Photonic Qubit |
|
|
277 | (2) |
|
12.7 Multiqubit Tomography |
|
|
279 | (1) |
|
12.8 Quantum Process Tomography |
|
|
280 | (3) |
|
|
283 | (1) |
|
|
283 | (2) |
|
|
285 | (2) |
|
|
287 | (18) |
|
|
287 | (1) |
|
13.2 Limitations of Classical Computers in Simulating Quantum Systems |
|
|
288 | (1) |
|
|
289 | (1) |
|
13.4 Analog Quantum Simulators |
|
|
290 | (1) |
|
13.5 Digital Quantum Simulators |
|
|
291 | (2) |
|
13.6 Theory of Quantum Simulation of the Schrodinger Equation |
|
|
293 | (1) |
|
13.7 Quantum Simulators Using Quantum Computers |
|
|
294 | (1) |
|
|
295 | (4) |
|
13.9 Quantum Circuits for Final Measurements |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (2) |
|
|
302 | (3) |
|
14 Quantum Error Correction |
|
|
305 | (22) |
|
|
305 | (1) |
|
14.2 Sources of Errors in Quantum Information Processing |
|
|
305 | (3) |
|
14.3 Difficulties of Using Classical Error Correction Techniques to QEC |
|
|
308 | (2) |
|
14.4 Digitization of Quantum Errors |
|
|
310 | (1) |
|
14.5 QEC Mechanisms Using Quantum Redundancy |
|
|
310 | (4) |
|
14.6 QEC with Stabilizer Codes |
|
|
314 | (3) |
|
|
317 | (2) |
|
14.8 Practical Issues in the Implementation of QEC Codes |
|
|
319 | (3) |
|
|
322 | (1) |
|
|
322 | (2) |
|
|
324 | (3) |
|
15 Some Other Advanced Topics |
|
|
327 | (48) |
|
|
327 | (1) |
|
15.2 Quantum Theory of Gravity |
|
|
327 | (4) |
|
|
331 | (6) |
|
|
337 | (6) |
|
15.5 Quantum Teleportation |
|
|
343 | (3) |
|
|
346 | (6) |
|
15.7 Quantum Pseudo-Telepathy Games |
|
|
352 | (6) |
|
|
358 | (1) |
|
|
359 | (3) |
|
|
362 | (4) |
|
|
366 | (1) |
|
|
367 | (7) |
|
|
374 | (1) |
|
|
375 | (32) |
|
|
375 | (1) |
|
16.2 Quantum Entangled Photons |
|
|
376 | (2) |
|
|
378 | (1) |
|
16.4 Detection of Weak Amplitude Object |
|
|
379 | (2) |
|
16.5 Entangled Two-Photon Microscopy |
|
|
381 | (1) |
|
16.6 Detection of Small Displacements |
|
|
382 | (2) |
|
|
384 | (2) |
|
|
386 | (3) |
|
16.9 Quantum Teleportation of Optical Images |
|
|
389 | (1) |
|
|
389 | (5) |
|
|
394 | (3) |
|
|
397 | (2) |
|
|
399 | (1) |
|
|
400 | (6) |
|
|
406 | (1) |
Solutions to Selected Exercises |
|
407 | (4) |
Index |
|
411 | |