Introduction |
|
xvii | |
Overview of Volume 1 |
|
xxiii | |
|
|
|
1 Towards the Schrodinger Equation |
|
|
3 | (12) |
|
1.1 How to Find a New Theory |
|
|
3 | (2) |
|
1.2 The Classical Wave Equation and the Schrodinger Equation |
|
|
5 | (7) |
|
1.2.1 From the Wave Equation to the Dispersion Relation |
|
|
5 | (4) |
|
1.2.2 From the Dispersion Relation to the Schrodinger Equation |
|
|
9 | (3) |
|
|
12 | (3) |
|
|
15 | (14) |
|
|
16 | (7) |
|
2.1.1 The Typical Shape of an Electromagnetic Wave |
|
|
16 | (1) |
|
2.1.2 Linear and Circular Polarization |
|
|
17 | (2) |
|
2.1.3 From Polarization to the Space of States |
|
|
19 | (4) |
|
|
23 | (5) |
|
2.2.1 Single Photons and Polarization |
|
|
23 | (2) |
|
2.2.2 Measuring the Polarization of Single Photons |
|
|
25 | (3) |
|
|
28 | (1) |
|
3 More on the Schrodinger Equation |
|
|
29 | (12) |
|
3.1 Properties of the Schrodinger Equation |
|
|
29 | (2) |
|
3.2 The Time-independent Schrodinger Equation |
|
|
31 | (2) |
|
|
33 | (6) |
|
3.3.1 Classical Numbers and Quantum-Mechanical Operators |
|
|
35 | (1) |
|
3.3.2 Commutation of Operators; Commutators |
|
|
36 | (3) |
|
|
39 | (2) |
|
4 Complex Vector Spaces and Quantum Mechanics |
|
|
41 | (14) |
|
4.1 Norm, Bra-Ket Notation |
|
|
42 | (2) |
|
4.2 Orthogonality, Orthonormality |
|
|
44 | (1) |
|
|
45 | (2) |
|
4.4 Projection Operators, Measurement |
|
|
47 | (6) |
|
4.4.1 Projection Operators |
|
|
47 | (4) |
|
4.4.2 Measurement and Eigenvalues |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
|
5 Two Simple Solutions of the Schrodinger Equation |
|
|
55 | (18) |
|
5.1 The Infinite Potential Well |
|
|
55 | (8) |
|
5.1.1 Solution of the Schrodinger Equation, Energy Quantization |
|
|
56 | (3) |
|
5.1.2 Solution of the Time-Dependent Schrodinger Equation |
|
|
59 | (1) |
|
5.1.3 Properties of the Eigenfunctions and Their Consequences |
|
|
60 | (2) |
|
5.1.4 Determination of the Coefficients Cn |
|
|
62 | (1) |
|
|
63 | (4) |
|
|
64 | (1) |
|
5.2.2 Example: Gaussian Distribution |
|
|
65 | (2) |
|
|
67 | (2) |
|
|
69 | (4) |
|
6 Interaction-Free Measurement |
|
|
73 | (14) |
|
|
73 | (5) |
|
6.1.1 Classical Light Rays and Particles in the Mach-Zehnder Interferometer |
|
|
73 | (3) |
|
6.1.2 Photons in the Mach-Zehnder Interferometer |
|
|
76 | (2) |
|
6.2 Formal Description, Unitary Operators |
|
|
78 | (4) |
|
|
79 | (1) |
|
6.2.2 Second Approach (Operators) |
|
|
80 | (2) |
|
|
82 | (3) |
|
|
82 | (1) |
|
6.3.2 Quantum Zeno Effect |
|
|
83 | (1) |
|
6.3.3 Delayed-Choice Experiments |
|
|
83 | (1) |
|
6.3.4 The Hadamard Transformation |
|
|
84 | (1) |
|
6.3.5 From the MZI to the Quantum Computer |
|
|
84 | (1) |
|
|
84 | (1) |
|
6.3.7 How Interaction-Free is the `Interaction-Free' Quantum Measurement? |
|
|
84 | (1) |
|
|
85 | (2) |
|
|
87 | (14) |
|
7.1 Position Probability and Measurements |
|
|
88 | (6) |
|
7.1.1 Example: Infinite Potential Wall |
|
|
88 | (1) |
|
|
89 | (3) |
|
|
92 | (2) |
|
|
94 | (2) |
|
7.3 Probability Current Density |
|
|
96 | (2) |
|
|
98 | (3) |
|
|
101 | (10) |
|
|
101 | (1) |
|
8.2 Modelling the Neutrino Oscillations |
|
|
102 | (4) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
8.2.4 Three-Dimensional Neutrino Oscillations |
|
|
105 | (1) |
|
|
106 | (3) |
|
8.3.1 Hermitian Operators |
|
|
106 | (2) |
|
8.3.2 Time Evolution and Measurement |
|
|
108 | (1) |
|
|
109 | (2) |
|
9 Expectation Values, Mean Values, and Measured Values |
|
|
111 | (16) |
|
9.1 Mean Values and Expectation Values |
|
|
111 | (7) |
|
9.1.1 Mean Values of Classical Measurements |
|
|
111 | (1) |
|
9.1.2 Expectation Value of the Position in Quantum Mechanics |
|
|
112 | (1) |
|
9.1.3 Expectation Value of the Momentum in Quantum Mechanics |
|
|
113 | (2) |
|
9.1.4 General Definition of the Expectation Value |
|
|
115 | (2) |
|
9.1.5 Variance, Standard Deviation |
|
|
117 | (1) |
|
|
118 | (3) |
|
9.2.1 Hermitian Operators Have Real Eigenvalues |
|
|
119 | (1) |
|
9.2.2 Eigenfunctions of Different Eigenvalues Are Orthogonal |
|
|
120 | (1) |
|
9.3 Time Behavior, Conserved Quantities |
|
|
121 | (3) |
|
9.3.1 Time Behavior of Expectation Values |
|
|
121 | (1) |
|
9.3.2 Conserved Quantities |
|
|
122 | (1) |
|
9.3.3 Ehrenfest's Theorem |
|
|
123 | (1) |
|
|
124 | (3) |
|
10 Stopover; then on to Quantum Cryptography |
|
|
127 | (14) |
|
|
127 | (1) |
|
10.2 Summary and Open Questions |
|
|
127 | (5) |
|
|
128 | (3) |
|
|
131 | (1) |
|
10.3 Quantum Cryptography |
|
|
132 | (9) |
|
|
133 | (1) |
|
|
133 | (2) |
|
10.3.3 BB84 Protocol Without Eve |
|
|
135 | (2) |
|
10.3.4 BB84 Protocol with Eve |
|
|
137 | (4) |
|
|
141 | (12) |
|
|
141 | (4) |
|
11.1.1 Wavefunctions and Coordinate Vectors |
|
|
141 | (2) |
|
11.1.2 The Scalar Product |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
11.3 Abstract Formulation |
|
|
146 | (4) |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
153 | (14) |
|
|
154 | (5) |
|
12.2 Position Representation and Momentum Representation |
|
|
159 | (4) |
|
|
163 | (1) |
|
|
164 | (3) |
|
|
167 | (22) |
|
13.1 Hermitian Operators, Observables |
|
|
168 | (8) |
|
13.1.1 Three Important Properties of Hermitian Operators |
|
|
169 | (3) |
|
13.1.2 Uncertainty Relations |
|
|
172 | (3) |
|
13.1.3 Degenerate Spectra |
|
|
175 | (1) |
|
|
176 | (3) |
|
13.2.1 Unitary Transformations |
|
|
176 | (1) |
|
13.2.2 Functions of Operators, the Time-Evolution Operator |
|
|
177 | (2) |
|
13.3 Projection Operators |
|
|
179 | (4) |
|
13.3.1 Spectral Representation |
|
|
180 | (1) |
|
13.3.2 Projection and Properties |
|
|
181 | (1) |
|
|
182 | (1) |
|
13.4 Systematics of the Operators |
|
|
183 | (1) |
|
|
184 | (5) |
|
14 Postulates of Quantum Mechanics |
|
|
189 | (16) |
|
|
190 | (6) |
|
14.1.1 States, State Space (Question 1) |
|
|
190 | (2) |
|
14.1.2 Probability Amplitudes, Probability (Question 2) |
|
|
192 | (1) |
|
14.1.3 Physical Quantities and Hermitian Operators (Question 2) |
|
|
192 | (1) |
|
14.1.4 Measurement and State Reduction (Question 2) |
|
|
193 | (1) |
|
14.1.5 Time Evolution (Question 3) |
|
|
194 | (2) |
|
|
196 | (5) |
|
|
201 | (1) |
|
14.3.1 Postulates of Quantum Mechanics as a Framework |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (3) |
Appendix A Abbreviations and Notations |
|
205 | (2) |
Appendix B Units and Constants |
|
207 | (6) |
Appendix C Complex Numbers |
|
213 | (10) |
Appendix D Calculus I |
|
223 | (16) |
Appendix E Calculus II |
|
239 | (8) |
Appendix F Linear Algebra I |
|
247 | (18) |
Appendix G Linear Algebra II |
|
265 | (10) |
Appendix H Fourier Transforms and the Delta Function |
|
275 | (18) |
Appendix I Operators |
|
293 | (20) |
Appendix J From Quantum Hopping to the Schrodinger Equation |
|
313 | (6) |
Appendix K The Phase Shift at a Beam Splitter |
|
319 | (2) |
Appendix L The Quantum Zeno Effect |
|
321 | (8) |
Appendix M Delayed Choice and the Quantum Eraser |
|
329 | (6) |
Appendix N The Equation of Continuity |
|
335 | (2) |
Appendix O Variance, Expectation Values |
|
337 | |