Atnaujinkite slapukų nuostatas

El. knyga: Quantum Nano-Plasmonics

(Politechnika Wroclawska, Poland)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Sep-2020
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108802291
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Sep-2020
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108802291

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"With examples and clear explanation throughout, this step-by-step approach makes the quantum theory of plasmons accessible to readers without a specialized training in theory. A fully analytical formulation offers an opportunity for further development of the research and applications. The theory is focused on the random phase approximation description of plasmons in metallic nanostructures, previously defined for the bulk metal only. Particular attention is paid to the large damping of plasmons in nanostructures, including electron scattering and Lorentz friction losses; a quantum description of the plasmon photovoltaic effect is presented and there is an in-depth analysis of plasmon-polariton kinetics in metallic nano-chains. Suitable for students in the fields of plasmonics, optoelectronics, and photonics and for researchers active in the fields of photovoltaics, optoelectronics, nanoplasmonics, and nano-photonics, the book should also be useful for researchers in soft plasmonics since it includes applications to electro-signalling in neurons"--

Daugiau informacijos

With examples throughout, this step-by-step approach makes quantum theory of plasmons accessible to readers without specialized training in theory.
Preface ix
1 Introduction and Description of Contents
1(16)
2 Physics of Metals -- Preliminaries
17(18)
2.1 Definition of a Metal
17(5)
2.2 Scheme of the Fermi Liquid Theory
22(13)
2.2.1 Phenomenological Theory of a Fermi Liquid
22(4)
2.2.2 Outline of the Microscopic Theory of a Normal Fermi Liquid
26(9)
3 Quasiclassical Description of Plasmons in the Bulk Metal
35(6)
3.1 Random Phase Approximation Theory of Plasmons of Pines and Bohm
35(4)
3.2 Screening of the Coulomb Interaction in Metals
39(2)
4 Plasmon Excitations in Nanometre-Sized Metallic Particles
41(18)
5 Damping of Plasmons in Metallic Nanoparticles
59(38)
5.1 Damped Plasmonic Oscillations in Metallic Nanospheres in Dielectric Surroundings
63(8)
5.2 Attenuation of Dipole Surface Plasmons with Exact Inclusion of the Lorentz Friction
71(6)
5.3 Comparison of Surface Plasmon Oscillation Features Including Lorentz Friction with the Experimental Data and Simplified Mie Approach
77(6)
5.4 Numerical Modelling of Plasmon Resonances in Metallic Nanoparticles
83(14)
6 Plasmon Photovoltaic Effect
97(36)
6.1 Semiclassical RPA Approach to Plasmons in Large Metallic Nanospheres
101(3)
6.2 Damping of Plasmons in Large Nanospheres
104(5)
6.2.1 Radiation from Dipole Surface Plasmons -- Lorentz Friction for Plasmons
105(4)
6.3 Transfer of Sunlight Energy to a Semiconductor Mediated by Surface Plasmons through the Channel of Dipole Coupling in the Near-Field Regime
109(11)
6.3.1 Fermi Golden Rule for Band Electron Transitions due to Coupling with Plasmons
109(4)
6.3.2 Plasmon Damping Rate due to Near-Field Coupling with Semiconductor-Band Electrons
113(3)
6.3.3 Transfer of Light Energy via the Plasmon Channel
116(4)
6.4 Experimental Demonstration of the Proximity Constraints of the Plasmon Effect
120(4)
6.5 Calculation of the Matrix Element for the Fermi Golden Rule Expression (6.37)
124(9)
7 Plasmon-Induced Efficiency Enhancement of Solar Cells Modified by Metallic Nanoparticles: Material Dependence
133(17)
7.1 Plasmon-Mediated Photoeffect: Probability of Electron Interband Excitation Due to Plasmons
134(4)
7.2 Damping Rate for Plasmons in a Metallic Nanoparticle Deposited on a Semiconductor
138(2)
7.3 Efficiency of the Light Absorption Channel via Plasmons for Various Materials
140(10)
8 Numerical Simulation of Plasmon Photoeffect
150(29)
8.1 Lorentz Friction Channel for Energy Losses of Surface Plasmons in a Metallic Nanoparticle
155(3)
8.2 Fermi Golden Rule for Probability of Electron Interband Excitation due to Plasmons in a Metallic Nanoparticle
158(5)
8.3 Numerical Modelling of the Plasmon Photoeffect by COMSOL
163(10)
8.4 Comparison with Experiment
173(3)
8.5 Conclusions
176(3)
9 Plasmon--Polaritons in Metallic Nanoparticle Chains
179(52)
9.1 Plasmon Oscillations in Metallic Nanospheres
181(5)
9.2 Radiative Properties of a Metallic Nanosphere in a Chain
186(4)
9.3 Calculation of the Radiative Damping of a Plasmon--Polariton in a Chain
190(5)
9.4 Plasmon--Polariton Self-Modes in a Chain Propagation
195(3)
9.5 The Self-Frequencies and Group Velocities of Plasmon--Polaritons in a Nano-Chain
198(4)
9.6 Exact Solution of Eq. (9.20) for the Plasmon--Polariton Self-Energy
202(8)
9.7 Collective Plasmon-Wave-Type Propagation along a Nano-Chain; Near-Field-Zone Approximation
210(21)
9.7.1 Near-Field-Zone Approximation of the Dipole Interaction in a Chain
211(4)
9.7.2 Medium- and Far-Field Corrections to the Near-Field Dipole Interaction
215(6)
9.7.3 Nonlinear Corrections to the Lorentz Friction
221(4)
9.7.4 Nonlinear Correction to the Radiation Losses of Plasmon--Polariton in a Nano-Chain
225(6)
10 Plasmon--Polariton Kinetics in a Metallic Nano-Chain Located in Absorbing Surroundings
231(21)
10.1 Plasmon Oscillations in a Single Metallic Nanosphere Including Damping
233(4)
10.2 Radiative Properties of Plasmon--Polaritons in a Metallic Nano-Chain Embedded in a Dielectric Medium
237(3)
10.3 Plasmon--Polariton Self-Modes in a Chain in Dielectric Surroundings
240(6)
10.4 Damping of Surface Plasmons in a Single Metallic Nanoparticle Deposited on a Semiconductor Substrate
246(3)
10.5 Plasmon--Polariton Dynamics in a Metallic Chain Deposited on a Semiconductor
249(3)
11 Plasmons in Finite Spherical Ionic Systems
252(24)
11.1 Fluctuations of the Charge Density in a Spherical Electrolyte System
253(2)
11.2 Model Definition
255(6)
11.3 Solution of RPA Plasmon Equation: Volume and Surface Plasmon Frequencies in a Spherical Finite Ion System
261(2)
11.3.1 Ionic Surface Ion Plasmon Frequencies for an Electrolyte Nanosphere Embedded in a Dielectric Medium with εl > 1
262(1)
11.4 Damping of Plasmon Oscillations in Ionic Systems
263(7)
11.4.1 Exact Inclusion of the Lorentz Damping
267(3)
11.5 Derivation of Plasmon Frequencies for a Finite Electrolyte System
270(6)
11.5.1 Volume Ionic Plasmons
270(1)
11.5.2 Surface Ionic Plasmons
271(5)
12 Plasmon--Polaritons in a Chain of Finite Ionic Systems; Model of Saltatory Conduction in Myelinated Axons
276(27)
12.1 Plasmon--Polariton Propagation in Linear Periodic Ionic Systems
279(5)
12.2 Plasmon--Polariton Model of Saltatory Conduction: Fitting the Kinetics to the Axon Parameters
284(9)
12.3 Soft Plasmonics Application: The Role of Grey and White Matter in Information Processing in the Brain
293(10)
12.3.1 Possible Link with the Topological Model of a Neuron Web
296(7)
References 303(10)
Index 313
Witold A. Jacak is Associate Professor at Politechnika Wroclawska, Poland. He is a theoretical physicist active in the fields of nano-plasmonics, quantum mechanics, decoherence in quantum dots, quantum information and quantum communication.