|
|
1 | (40) |
|
1.1 The scope of quantum mechanics |
|
|
1 | (2) |
|
1.2 The Hilbert Space Postulate |
|
|
3 | (1) |
|
1.3 Polarization of the photon |
|
|
4 | (4) |
|
|
8 | (6) |
|
1.4.1 The Measurement Postulate |
|
|
8 | (2) |
|
1.4.2 Polarization measurements |
|
|
10 | (4) |
|
1.5 Quantum interference and complementarity |
|
|
14 | (3) |
|
|
17 | (6) |
|
|
19 | (2) |
|
1.6.2 Practical matters in quantum cryptography |
|
|
21 | (2) |
|
1.7 Operators in quantum mechanics |
|
|
23 | (3) |
|
1.8 Projection operators and unnormalized states |
|
|
26 | (1) |
|
|
27 | (5) |
|
1.9.1 Observable operators |
|
|
27 | (1) |
|
1.9.2 Mean value and uncertainty of an observable |
|
|
28 | (2) |
|
1.9.3 The uncertainty principle |
|
|
30 | (2) |
|
|
32 | (3) |
|
|
35 | (6) |
|
|
41 | (52) |
|
2.1 Tensor product spaces |
|
|
41 | (8) |
|
2.1.1 Tensor product states and entangled states |
|
|
41 | (3) |
|
2.1.2 Measurements in tensor product spaces |
|
|
44 | (1) |
|
2.1.3 Tensor products of operators |
|
|
45 | (2) |
|
|
47 | (2) |
|
2.2 Local measurements of entangled states |
|
|
49 | (8) |
|
2.2.1 Remote state preparation |
|
|
49 | (1) |
|
2.2.2 Partial inner product |
|
|
50 | (3) |
|
2.2.3 Local measurements and causality |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (9) |
|
2.3.1 Einstein-Podolsky-Rosen paradox |
|
|
57 | (2) |
|
2.3.2 The Bell inequality |
|
|
59 | (2) |
|
2.3.3 Violation of the Bell inequality |
|
|
61 | (2) |
|
2.3.4 Greenberger-Horne-Zeilinger (GHZ) nonlocality |
|
|
63 | (3) |
|
2.4 An insight into quantum measurements |
|
|
66 | (13) |
|
2.4.1 Von Neumann measurements |
|
|
66 | (3) |
|
|
69 | (2) |
|
2.4.3 Interpretations of quantum mechanics |
|
|
71 | (3) |
|
2.4.4 The superposition tree* |
|
|
74 | (5) |
|
|
79 | (3) |
|
2.6 Quantum teleportation and its applications |
|
|
82 | (7) |
|
2.6.1 Quantum teleportation |
|
|
82 | (5) |
|
|
87 | (2) |
|
|
89 | (4) |
|
|
93 | (76) |
|
3.1 Continuous observables |
|
|
93 | (6) |
|
|
99 | (3) |
|
3.3 Position and momentum bases |
|
|
102 | (5) |
|
3.3.1 Conversion between position and momentum bases |
|
|
102 | (2) |
|
3.3.2 Position-momentum uncertainty |
|
|
104 | (2) |
|
3.3.3 The original Einstein-Podolsky-Rosen paradox |
|
|
106 | (1) |
|
3.4 The free space potential |
|
|
107 | (5) |
|
3.5 Time-independent Schrodinger equation |
|
|
112 | (2) |
|
|
114 | (6) |
|
|
120 | (9) |
|
3.7.1 The single-step potential |
|
|
121 | (4) |
|
|
125 | (4) |
|
|
129 | (14) |
|
3.8.1 Annihilation and creation operators |
|
|
130 | (3) |
|
|
133 | (6) |
|
|
139 | (4) |
|
|
143 | (8) |
|
|
143 | (5) |
|
3.9.2 Displacement operator |
|
|
148 | (2) |
|
3.9.3 Evolution of probability densities* |
|
|
150 | (1) |
|
3.10 Transformations of harmonic oscillator states |
|
|
151 | (11) |
|
3.10.1 Coherent state as displaced vacuum |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (8) |
|
|
162 | (7) |
|
|
169 | (52) |
|
|
169 | (2) |
|
4.2 Rotationally symmetric potential |
|
|
171 | (7) |
|
4.2.1 Spherical coordinates |
|
|
171 | (3) |
|
|
174 | (4) |
|
4.3 Angular momentum eigenstates |
|
|
178 | (9) |
|
4.3.1 Matrix representation of the angular momentum |
|
|
178 | (5) |
|
4.3.2 Wavefunctions of angular momentum eigenstates |
|
|
183 | (3) |
|
|
186 | (1) |
|
|
187 | (10) |
|
4.4.1 Radial wavefunctions |
|
|
187 | (3) |
|
4.4.2 Energy spectrum and transitions |
|
|
190 | (4) |
|
|
194 | (3) |
|
|
197 | (3) |
|
4.6 Magnetic moment and magnetic field |
|
|
200 | (6) |
|
4.6.1 Angular momentum and magnetic moment |
|
|
200 | (3) |
|
4.6.2 Stem-Gerlach apparatus |
|
|
203 | (1) |
|
4.6.3 Evolution of magnetic states |
|
|
204 | (2) |
|
|
206 | (10) |
|
|
206 | (3) |
|
4.7.2 Evolution under the rotating-wave approximation |
|
|
209 | (2) |
|
|
211 | (1) |
|
4.7.4 Applications of magnetic resonance |
|
|
212 | (4) |
|
|
216 | (5) |
|
5 Quantum physics of complex systems |
|
|
221 | (34) |
|
|
221 | (6) |
|
5.1.1 Pure and mixed states |
|
|
221 | (2) |
|
5.1.2 Diagonal and off-diagonal elements |
|
|
223 | (3) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
229 | (2) |
|
5.4 Density matrix and Bloch vector |
|
|
231 | (2) |
|
5.5 Density matrix and magnetic resonance |
|
|
233 | (5) |
|
|
233 | (1) |
|
|
234 | (2) |
|
5.5.3 Relaxation and the Bloch vector |
|
|
236 | (2) |
|
5.6 Generalized measurements* |
|
|
238 | (5) |
|
5.6.1 A realistic detector |
|
|
239 | (1) |
|
5.6.2 Positive operator-valued measure (POVM) |
|
|
240 | (3) |
|
|
243 | (7) |
|
5.7.1 Quantum state tomography |
|
|
243 | (2) |
|
5.7.2 Quantum process tomography |
|
|
245 | (4) |
|
5.7.3 Quantum detector tomography |
|
|
249 | (1) |
|
|
250 | (5) |
|
|
255 | (22) |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
262 | (5) |
|
A.6.1 Operations with linear operators |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
265 | (2) |
|
A.7 Adjoint and self-adjoint operators |
|
|
267 | (2) |
|
A.8 Spectral decomposition |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
272 | (2) |
|
A.11 Functions of operators |
|
|
274 | (3) |
|
B Probabilities and distributions |
|
|
277 | (10) |
|
B.1 Expectation value and variance |
|
|
277 | (1) |
|
B.2 Conditional probabilities |
|
|
278 | (2) |
|
B.3 Binomial and Poisson distributions |
|
|
280 | (1) |
|
B.4 Probability densities |
|
|
281 | (6) |
|
C Optical polarization tutorial |
|
|
287 | (6) |
|
C.1 Polarization of light |
|
|
287 | (2) |
|
C.2 Polarizing beam splitter |
|
|
289 | (1) |
|
|
290 | (3) |
|
D Dirac delta function and the Fourier transformation |
|
|
293 | (6) |
|
|
293 | (2) |
|
D.2 Fourier transformation |
|
|
295 | (4) |
Index |
|
299 | |