Atnaujinkite slapukų nuostatas

Quantum Physics: An Introduction Based on Photons 2018 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 303 pages, aukštis x plotis: 235x155 mm, weight: 498 g, XX, 303 p. With online files/update., 1 Paperback / softback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 25-May-2018
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 366256582X
  • ISBN-13: 9783662565827
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 303 pages, aukštis x plotis: 235x155 mm, weight: 498 g, XX, 303 p. With online files/update., 1 Paperback / softback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 25-May-2018
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 366256582X
  • ISBN-13: 9783662565827
Kitos knygos pagal šią temą:
This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence  concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. 

 The book uses a mathematically simple physical system photon polarization as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality.

 The author adopts a Socratic pedagogy: The student is guided to develop the machinery ofquantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.
1 The quantum postulates
1(40)
1.1 The scope of quantum mechanics
1(2)
1.2 The Hilbert Space Postulate
3(1)
1.3 Polarization of the photon
4(4)
1.4 Quantum measurements
8(6)
1.4.1 The Measurement Postulate
8(2)
1.4.2 Polarization measurements
10(4)
1.5 Quantum interference and complementarity
14(3)
1.6 Quantum cryptography
17(6)
1.6.1 The BB84 protocol
19(2)
1.6.2 Practical matters in quantum cryptography
21(2)
1.7 Operators in quantum mechanics
23(3)
1.8 Projection operators and unnormalized states
26(1)
1.9 Quantum observables
27(5)
1.9.1 Observable operators
27(1)
1.9.2 Mean value and uncertainty of an observable
28(2)
1.9.3 The uncertainty principle
30(2)
1.10 Quantum evolution
32(3)
1.11 Problems
35(6)
2 Entanglement
41(52)
2.1 Tensor product spaces
41(8)
2.1.1 Tensor product states and entangled states
41(3)
2.1.2 Measurements in tensor product spaces
44(1)
2.1.3 Tensor products of operators
45(2)
2.1.4 Local operators
47(2)
2.2 Local measurements of entangled states
49(8)
2.2.1 Remote state preparation
49(1)
2.2.2 Partial inner product
50(3)
2.2.3 Local measurements and causality
53(2)
2.2.4 Mixed states
55(2)
2.3 Quantum nonlocality
57(9)
2.3.1 Einstein-Podolsky-Rosen paradox
57(2)
2.3.2 The Bell inequality
59(2)
2.3.3 Violation of the Bell inequality
61(2)
2.3.4 Greenberger-Horne-Zeilinger (GHZ) nonlocality
63(3)
2.4 An insight into quantum measurements
66(13)
2.4.1 Von Neumann measurements
66(3)
2.4.2 Decoherence
69(2)
2.4.3 Interpretations of quantum mechanics
71(3)
2.4.4 The superposition tree*
74(5)
2.5 Quantum computation
79(3)
2.6 Quantum teleportation and its applications
82(7)
2.6.1 Quantum teleportation
82(5)
2.6.2 Quantum repeater
87(2)
2.7 Problems
89(4)
3 One-dimensional motion
93(76)
3.1 Continuous observables
93(6)
3.2 De Broglie wave
99(3)
3.3 Position and momentum bases
102(5)
3.3.1 Conversion between position and momentum bases
102(2)
3.3.2 Position-momentum uncertainty
104(2)
3.3.3 The original Einstein-Podolsky-Rosen paradox
106(1)
3.4 The free space potential
107(5)
3.5 Time-independent Schrodinger equation
112(2)
3.6 Bound states
114(6)
3.7 Unbound states
120(9)
3.7.1 The single-step potential
121(4)
3.7.2 Quantum tunnelling
125(4)
3.8 Harmonic oscillator
129(14)
3.8.1 Annihilation and creation operators
130(3)
3.8.2 Fock states
133(6)
3.8.3 Coherent states
139(4)
3.9 Heisenberg picture
143(8)
3.9.1 Operator evolution
143(5)
3.9.2 Displacement operator
148(2)
3.9.3 Evolution of probability densities*
150(1)
3.10 Transformations of harmonic oscillator states
151(11)
3.10.1 Coherent state as displaced vacuum
152(1)
3.10.2 Phase shift
153(1)
3.10.3 Squeezing
154(8)
3.11 Problems
162(7)
4 Angular momentum
169(52)
4.1 3D motion
169(2)
4.2 Rotationally symmetric potential
171(7)
4.2.1 Spherical coordinates
171(3)
4.2.2 Angular momentum
174(4)
4.3 Angular momentum eigenstates
178(9)
4.3.1 Matrix representation of the angular momentum
178(5)
4.3.2 Wavefunctions of angular momentum eigenstates
183(3)
4.3.3 Spin
186(1)
4.4 The hydrogen atom
187(10)
4.4.1 Radial wavefunctions
187(3)
4.4.2 Energy spectrum and transitions
190(4)
4.4.3 The periodic table
194(3)
4.5 The Bloch sphere
197(3)
4.6 Magnetic moment and magnetic field
200(6)
4.6.1 Angular momentum and magnetic moment
200(3)
4.6.2 Stem-Gerlach apparatus
203(1)
4.6.3 Evolution of magnetic states
204(2)
4.7 Magnetic resonance
206(10)
4.7.1 Rotating basis
206(3)
4.7.2 Evolution under the rotating-wave approximation
209(2)
4.7.3 Pulse area
211(1)
4.7.4 Applications of magnetic resonance
212(4)
4.8 Problems
216(5)
5 Quantum physics of complex systems
221(34)
5.1 The density operator
221(6)
5.1.1 Pure and mixed states
221(2)
5.1.2 Diagonal and off-diagonal elements
223(3)
5.1.3 Evolution
226(1)
5.2 Trace
227(2)
5.3 Partial trace
229(2)
5.4 Density matrix and Bloch vector
231(2)
5.5 Density matrix and magnetic resonance
233(5)
5.5.1 Decoherence
233(1)
5.5.2 Thermalization
234(2)
5.5.3 Relaxation and the Bloch vector
236(2)
5.6 Generalized measurements*
238(5)
5.6.1 A realistic detector
239(1)
5.6.2 Positive operator-valued measure (POVM)
240(3)
5.7 Quantum tomography*
243(7)
5.7.1 Quantum state tomography
243(2)
5.7.2 Quantum process tomography
245(4)
5.7.3 Quantum detector tomography
249(1)
5.8 Problems
250(5)
A Linear algebra basics
255(22)
A.1 Linear spaces
255(1)
A.2 Basis and dimension
256(2)
A.3 Inner Product
258(1)
A.4 Orthonormal Basis
259(2)
A.5 Adjoint Space
261(1)
A.6 Linear Operators
262(5)
A.6.1 Operations with linear operators
262(1)
A.6.2 Matrices
263(2)
A.6.3 Outer products
265(2)
A.7 Adjoint and self-adjoint operators
267(2)
A.8 Spectral decomposition
269(2)
A.9 Commutators
271(1)
A.10 Unitary operators
272(2)
A.11 Functions of operators
274(3)
B Probabilities and distributions
277(10)
B.1 Expectation value and variance
277(1)
B.2 Conditional probabilities
278(2)
B.3 Binomial and Poisson distributions
280(1)
B.4 Probability densities
281(6)
C Optical polarization tutorial
287(6)
C.1 Polarization of light
287(2)
C.2 Polarizing beam splitter
289(1)
C.3 Waveplates
290(3)
D Dirac delta function and the Fourier transformation
293(6)
D.1 Dirac delta function
293(2)
D.2 Fourier transformation
295(4)
Index 299
Alexander Lvovsky is an experimental physicist. He was born and raised in Moscow and studied Physics at the Moscow Institute of Physics and Technology. In 1993, he moved to Columbia University in New York City for his graduate studies. His thesis research, conducted under the supervision of Dr. Sven R. Hartmann, was in the field of coherent optical transients in atomic gases. After completing his Ph. D. in 1998, he spent a year at the University of California, Berkeley as a postdoctoral fellow, and then five years at Universität Konstanz in Germany, first as an Alexander von Humboldt postdoctoral fellow, then as a research group leader in quantum-optical information technology. In 2004 he became Professor in the Department of Physics and Astronomy at the University of Calgary, where he remains today with a part-time appointment as a research group leader at the Russian Quantum Center in Moscow. Alexander is a past Canada Research Chair, a lifetime member of the American Physical Society, a Fellow of the Optical Society of America and a winner of many awards most notably the International Quantum Communications Award, personal commendation letter from the Prime Minister of Canada, the Alberta Ingenuity New Faculty award and the Emmy Noether research award of the German Science Foundation. Alexander conducts wide-profile experimental and theoretical research on synthesis, manipulation, measurement and storage of quantum optical information for applications in quantum technology.