Atnaujinkite slapukų nuostatas

El. knyga: Quantum Triangulations: Moduli Spaces, Strings, and Quantum Computing

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 845
  • Išleidimo metai: 14-Jan-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642244407
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 845
  • Išleidimo metai: 14-Jan-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642244407

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment.  The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

This book offers an introduction to triangulated manifolds. It examines, through a set of cases studies, the connection between triangulated manifolds and quantum physics .

Recenzijos

At several place in mathematics triangulations of 2-manifolds are useful. It is the goal of this book to give an access to these very interesting applications and relations. The book makes an inspiring reading for mathematicians and theoretical physicists working in the field. (Martin Schlichenmaier, zbMATH, Vol. 1326.81003, 2016)

In this book, the authors present to the readers the rich structures underlying polyhedral surfaces. They discuss their relations with Riemann moduli spaces, noncritical string theory and quantum computing. This book is a useful resource for mathematicians and physicists working in the field of quantum geometry, three-manifold invariants and string theory. (Lee-Peng Teo, Mathematical Reviews, January, 2013)

1 Triangulated Surfaces and Polyhedral Structures
1(54)
1.1 Triangulations
1(3)
1.2 Piecewise-Linear Manifolds
4(4)
1.3 Polyhedral Surfaces
8(2)
1.4 The Metric Geometry of Polyhedral Surfaces
10(4)
1.5 Complex-Valued Holonomy
14(3)
1.6 The Space of Polyhedral Structures POLg, N0(M)
17(2)
1.7 The Space of Polyhedral Surfaces Tmet g, No (M;{O(k)})
19(6)
1.8 Cotangent Cones and Circle Bundles 2(k) Over Tmet g, No(M)
25(11)
1.9 The Conical Symplectic Form on Tmet g, No(M,{O(k)})
36(5)
1.10 The Euler Class of the Circle Bundle 2(k)
41(2)
1.11 Degenerations and Stable Polyhedral Surfaces
43(10)
References
53(2)
2 Singular Euclidean Structures and Riemann Surfaces
55(28)
2.1 The Barycentrically Dual Polytope of a Polyhedral Surface
56(4)
2.2 Polytope Automorphisms and Ribbon Graphs
60(6)
2.3 Remarks on Metric Ribbon Graphs
66(1)
2.4 The Riemann Surface Associated with (PT,M)
67(8)
2.5 Troyanov's Singular Euclidean Structures
75(4)
2.6 Chern and Euler Classes Over POLg, N0(M)
79(1)
References
80(3)
3 Polyhedral Surfaces and the Weil-Petersson Form
83(32)
3.1 Horospheres in H3
83(4)
3.2 Ideal Tetrahedra in Hup3,+
87(2)
3.3 A Sky-Mapping for Polyhedral Surfaces
89(1)
3.4 The Computation of Lambda-Lengths
90(4)
3.5 Polyhedral Surfaces and Hyperbolic Surfaces with Boundaries
94(7)
3.6 The Weil-Petersson Form on Tmet g, No (M, {O(k)})
101(6)
3.7 The Symplectic Volume of the Space of Polyhedral Structures
107(7)
References
114(1)
4 The Quantum Geometry of Polyhedral Surfaces
115(60)
4.1 Introduction
115(1)
4.2 Space of Maps and QFT
115(2)
4.3 The Space of Natural Lagrangians
117(2)
4.4 An Informal Geometrical View to Renormalization
119(7)
4.5 The Weyl Anomaly and Liouville Action
126(4)
4.6 Non-critical Strings and 2D Quantum Gravity
130(4)
4.7 A Spacetime Interpretation of the Liouville Mode
134(2)
4.8 A Renormalization Group Perspective
136(4)
4.9 KPZ Scaling
140(4)
4.10 2D QG and Polyhedral Surfaces: General Remarks
144(2)
4.11 The Moduli Space Mg, No and 2D Quantum Gravity
146(4)
4.12 Polyhedral Liouville Action and KPZ Scaling
150(10)
4.13 Polyhedral Surfaces and Open/Closed String Duality
160(5)
4.14 Glimpses of Hyperbolic 3-Manifolds and of Their Volume
165(6)
References
171(4)
5 State Sum Models and Observables
175(42)
5.1 The Wigner 6j Symbol and the Tetrahedron
176(5)
5.1.1 The Racah Polynomial and Algebraic Identities for the 6j Symbol
178(2)
5.1.2 Ponzano-Regge Asymptotic Formula
180(1)
5.2 State Sum Functionals for Closed 3-Manifolds
181(7)
5.2.1 Ponzano-Regge State Sum and Semiclassical Euclidean Gravity
181(3)
5.2.2 Turaev-Viro Quantum Invariant
184(2)
5.2.3 Chern-Simons-Witten Generating Functional and Turaev-Viro Invariant
186(2)
5.3 State Sum Functionals for 3-Manifolds with Boundary
188(10)
5.3.1 Turaev-Viro Invariant with a Fixed Boundary Triangulation
188(1)
5.3.2 Ponzano-Regge State Sum for a Pair (M3, ∂M3)
189(5)
5.3.3 q-Extension, Induced State Sums and d-Dimensional Hierachies
194(4)
5.4 Observables in the Turaev-Viro Environment
198(15)
5.4.1 Turaev-Viro Quantum Initial Data
198(3)
5.4.2 State Sum Invariants of Colored Fat Graphs in 3-Manifolds
201(10)
5.4.3 Heegard Splitting Version of State Models for Closed Oriented 3-Manifolds
211(2)
References
213(4)
6 Combinatorial Framework for Topological Quantum Computing
217(38)
6.1 The Spin Network Quantum Simulator
218(3)
6.2 Knots, Braids and Complexity Classes
221(7)
6.3 Polynomial Invariants of Knots and Related Algorithmic Problems
228(5)
6.4 Efficient Quantum Processing of Colored Jones Polynomials
233(17)
6.4.1 q-Spin Network Automata as Quantum Recognizers
234(3)
6.4.2 Processing Colored Oriented Braids on Spin Network q-Recognizers
237(7)
6.4.3 The Qubit Model and Approximate Evaluation of the Colored Jones Invariants
244(4)
6.4.4 Extension to 3-Manifold Quantum Invariants
248(2)
6.5 Quantum Computing and Quantized Geometries: An Outlook
250(2)
References
252(3)
Appendix A A Capsule of Moduli Space Theory 255(18)
Appendix B Spectral Theory on Polyhedral Surfaces 273(6)
Index 279