|
|
1 | (20) |
|
1.1 Hamilton's quaternions |
|
|
1 | (5) |
|
1.2 Algebra after the quaternions |
|
|
6 | (4) |
|
1.3 Quadratic forms and arithmetic |
|
|
10 | (1) |
|
1.4 Modular forms and geometry |
|
|
11 | (4) |
|
|
15 | (1) |
|
|
16 | (5) |
I Algebra |
|
|
|
21 | (14) |
|
|
21 | (1) |
|
|
22 | (2) |
|
2.3 Matrix representations |
|
|
24 | (2) |
|
|
26 | (4) |
|
|
30 | (5) |
|
|
35 | (12) |
|
|
35 | (1) |
|
|
36 | (2) |
|
3.3 Reduced trace and reduced norm |
|
|
38 | (1) |
|
3.4 Uniqueness and degree |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
43 | (4) |
|
|
47 | (18) |
|
4.1 Reduced norm as quadratic form |
|
|
47 | (1) |
|
|
48 | (4) |
|
4.3 Discriminants, nondegeneracy |
|
|
52 | (2) |
|
4.4 Nondegenerate standard involutions |
|
|
54 | (1) |
|
4.5 Special orthogonal groups |
|
|
55 | (4) |
|
|
59 | (6) |
|
5 Ternary quadratic forms and quaternion algebras |
|
|
65 | (20) |
|
5.1 Reduced norm as quadratic form |
|
|
65 | (1) |
|
5.2 Isomorphism classes of quaternion algebras |
|
|
66 | (3) |
|
|
69 | (4) |
|
|
73 | (3) |
|
|
76 | (1) |
|
|
77 | (4) |
|
|
81 | (4) |
|
|
85 | (10) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (2) |
|
6.4 Characterizing quaternion algebras |
|
|
89 | (4) |
|
|
93 | (2) |
|
|
95 | (28) |
|
7.1 Motivation and summary |
|
|
95 | (2) |
|
|
97 | (4) |
|
7.3 Semisimple modules and the Wedderburn-Artin theorem |
|
|
101 | (2) |
|
|
103 | (2) |
|
7.5 Central simple algebras |
|
|
105 | (2) |
|
|
107 | (1) |
|
7.7 The Skolem-Noether theorem |
|
|
108 | (4) |
|
7.8 Reduced trace and norm, universality |
|
|
112 | (3) |
|
|
115 | (2) |
|
|
117 | (6) |
|
8 Simple algebras and involutions |
|
|
123 | (16) |
|
8.1 The Brauer group and involutions |
|
|
123 | (1) |
|
8.2 Biquaternion algebras |
|
|
124 | (2) |
|
|
126 | (2) |
|
|
128 | (3) |
|
8.5 Endomorphism algebras of abelian varieties |
|
|
131 | (2) |
|
|
133 | (6) |
II Arithmetic |
|
|
9 Lattices and integral quadratic forms |
|
|
139 | (16) |
|
|
139 | (1) |
|
9.2 Bits of commutative algebra |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (2) |
|
|
145 | (2) |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (2) |
|
|
152 | (3) |
|
|
155 | (10) |
|
10.1 Lattices with multiplication |
|
|
155 | (1) |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
159 | (1) |
|
10.5 Orders in a matrix ring |
|
|
160 | (1) |
|
|
161 | (4) |
|
|
165 | (16) |
|
|
165 | (1) |
|
|
166 | (3) |
|
|
169 | (1) |
|
11.4 Unique factorization |
|
|
170 | (2) |
|
11.5 Finite quaternionic unit groups |
|
|
172 | (4) |
|
|
176 | (5) |
|
12 Ternary quadratic forms over local fields |
|
|
181 | (20) |
|
12.1 The p-adic numbers and local quaternion algebras |
|
|
181 | (3) |
|
|
184 | (5) |
|
12.3 Classification via quadratic forms |
|
|
189 | (4) |
|
|
193 | (3) |
|
|
196 | (5) |
|
13 Quaternion algebras over local fields |
|
|
201 | (16) |
|
13.1 Extending the valuation |
|
|
201 | (1) |
|
|
202 | (3) |
|
13.3 Classification via extensions of valuations |
|
|
205 | (3) |
|
|
208 | (2) |
|
|
210 | (2) |
|
|
212 | (5) |
|
14 Quaternion algebras over global fields |
|
|
217 | (24) |
|
|
217 | (2) |
|
14.2 Hilbert reciprocity over the rationals |
|
|
219 | (4) |
|
14.3 Hasse-Minkowski theorem over the rationals |
|
|
223 | (4) |
|
|
227 | (3) |
|
14.5 Ramification and discriminant |
|
|
230 | (1) |
|
14.6 Quaternion algebras over global fields |
|
|
231 | (2) |
|
|
233 | (2) |
|
|
235 | (6) |
|
|
241 | (16) |
|
15.1 Discriminantal notions |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
245 | (1) |
|
15.4 Reduced discriminant |
|
|
246 | (2) |
|
15.5 Maximal orders and discriminants |
|
|
248 | (1) |
|
|
249 | (4) |
|
|
253 | (4) |
|
16 Quaternion ideals and invertibility |
|
|
257 | (20) |
|
|
257 | (2) |
|
16.2 Locally principal, compatible lattices |
|
|
259 | (2) |
|
|
261 | (2) |
|
16.4 Algebra and absolute norm |
|
|
263 | (2) |
|
|
265 | (3) |
|
16.6 Invertibility with a standard involution |
|
|
268 | (3) |
|
16.7 One-sided invertibility |
|
|
271 | (2) |
|
16.8 Invertibility and the codifferent |
|
|
273 | (1) |
|
|
274 | (3) |
|
17 Classes of quaternion ideals |
|
|
277 | (20) |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (3) |
|
17.5 Finiteness of the class set: over the integers |
|
|
284 | (1) |
|
|
285 | (2) |
|
17.7 Finiteness of the class set: over number rings |
|
|
287 | (4) |
|
|
291 | (2) |
|
|
293 | (4) |
|
18 Two-sided ideals and the Picard group |
|
|
297 | (14) |
|
18.1 Noncommutative Dedekind domains |
|
|
297 | (2) |
|
|
299 | (1) |
|
|
300 | (3) |
|
|
303 | (2) |
|
18.5 Classes of two-sided ideals |
|
|
305 | (2) |
|
|
307 | (4) |
|
|
311 | (14) |
|
19.1 Composition laws and ideal multiplication |
|
|
311 | (3) |
|
|
314 | (1) |
|
|
315 | (3) |
|
|
318 | (1) |
|
19.5 Brandt class groupoid |
|
|
319 | (2) |
|
|
321 | (1) |
|
|
322 | (3) |
|
20 Integral representation theory |
|
|
325 | (18) |
|
20.1 Projectivity, invertibility, and representation theory |
|
|
325 | (2) |
|
|
327 | (1) |
|
20.3 Projective modules and invertible lattices |
|
|
328 | (2) |
|
|
330 | (2) |
|
20.5 Local Jacobson radical |
|
|
332 | (1) |
|
20.6 Integral representation theory |
|
|
333 | (2) |
|
20.7 Stable class group and cancellation |
|
|
335 | (5) |
|
|
340 | (3) |
|
21 Hereditary and extremal orders |
|
|
343 | (10) |
|
21.1 Hereditary and extremal orders |
|
|
343 | (1) |
|
|
344 | (2) |
|
21.3 Explicit description of extremal orders |
|
|
346 | (2) |
|
|
348 | (2) |
|
21.5 Classification of local hereditary orders |
|
|
350 | (1) |
|
|
351 | (2) |
|
22 Quaternion orders and ternary quadratic forms |
|
|
353 | (22) |
|
22.1 Quaternion orders and ternary quadratic forms |
|
|
353 | (3) |
|
22.2 Even Clifford algebras |
|
|
356 | (3) |
|
22.3 Even Clifford algebra of a ternary quadratic module |
|
|
359 | (5) |
|
|
364 | (4) |
|
22.5 Twisting and final bijection |
|
|
368 | (3) |
|
|
371 | (4) |
|
|
375 | (18) |
|
23.1 Highlights of quaternion orders |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
378 | (4) |
|
|
382 | (4) |
|
|
386 | (3) |
|
|
389 | (4) |
|
24 Quaternion orders: second meeting |
|
|
393 | (22) |
|
24.1 Advanced quaternion orders |
|
|
393 | (1) |
|
|
394 | (6) |
|
|
400 | (3) |
|
|
403 | (3) |
|
24.5 Bass and basic orders |
|
|
406 | (3) |
|
24.6 Tree of odd Bass orders |
|
|
409 | (1) |
|
|
410 | (5) |
III Analysis |
|
|
25 The Eichler mass formula |
|
|
415 | (16) |
|
25.1 Weighted class number formula |
|
|
415 | (1) |
|
25.2 Imaginary quadratic class number formula |
|
|
416 | (4) |
|
25.3 Eichler mass formula: over the nationals |
|
|
420 | (3) |
|
25.4 Class number one and type number one |
|
|
423 | (2) |
|
|
425 | (6) |
|
26 Classical zeta functions |
|
|
431 | (26) |
|
26.1 Eichler mass formula |
|
|
431 | (2) |
|
26.2 Analytic class number formula |
|
|
433 | (3) |
|
26.3 Classical zeta functions of quaternion algebras |
|
|
436 | (2) |
|
26.4 Counting ideals in a maximal order |
|
|
438 | (3) |
|
26.5 Eichler mass formula: maximal orders |
|
|
441 | (3) |
|
26.6 Eichler mass formula: general case |
|
|
444 | (3) |
|
|
447 | (1) |
|
26.8 Functional equation and classification |
|
|
447 | (5) |
|
|
452 | (5) |
|
|
457 | (20) |
|
27.1 The rational adele ring |
|
|
457 | (3) |
|
27.2 The rational idele group |
|
|
460 | (2) |
|
27.3 Rational quaternionic adeles and ideles |
|
|
462 | (1) |
|
|
463 | (2) |
|
|
465 | (3) |
|
27.6 Noncommutative adeles |
|
|
468 | (4) |
|
|
472 | (1) |
|
|
473 | (4) |
|
|
477 | (26) |
|
|
477 | (2) |
|
28.2 Strong approximation for SL2(Q) |
|
|
479 | (3) |
|
|
482 | (1) |
|
28.4 Strong approximation and the ideal class set |
|
|
483 | (1) |
|
28.5 Statement and first applications |
|
|
484 | (3) |
|
28.6 Further applications |
|
|
487 | (3) |
|
|
490 | (3) |
|
|
493 | (2) |
|
|
495 | (3) |
|
|
498 | (1) |
|
|
499 | (4) |
|
|
503 | (38) |
|
29.1 Poisson summation and the Riemann zeta function |
|
|
503 | (2) |
|
29.2 Idelic zeta functions, after Tate |
|
|
505 | (2) |
|
|
507 | (2) |
|
29.4 Modulus and Fourier inversion |
|
|
509 | (2) |
|
29.5 Local measures and zeta functions: archimedean case |
|
|
511 | (3) |
|
29.6 Local measures: commutative nonarchimedean case |
|
|
514 | (3) |
|
29.7 Local zeta functions: nonarchimedean case |
|
|
517 | (4) |
|
29.8 Idelic zeta functions |
|
|
521 | (4) |
|
29.9 Convergence and residue |
|
|
525 | (2) |
|
|
527 | (8) |
|
|
535 | (2) |
|
|
537 | (4) |
|
|
541 | (28) |
|
30.1 Representation numbers |
|
|
541 | (2) |
|
30.2 Sums of three squares |
|
|
543 | (2) |
|
|
545 | (2) |
|
30.4 Counting embeddings, idelically: the trace formula |
|
|
547 | (4) |
|
30.5 Local embedding numbers: maximal orders |
|
|
551 | (3) |
|
30.6 Local embedding numbers: Eichler orders |
|
|
554 | (5) |
|
30.7 Global embedding numbers |
|
|
559 | (1) |
|
30.8 Class number formula |
|
|
560 | (3) |
|
|
563 | (2) |
|
|
565 | (4) |
|
|
569 | (22) |
|
|
569 | (3) |
|
31.2 Selectivity conditions |
|
|
572 | (1) |
|
|
573 | (3) |
|
31.4 Outer selectivity inequalities |
|
|
576 | (1) |
|
31.5 Middle selectivity equality |
|
|
577 | (2) |
|
31.6 Optimal selectivity conclusion |
|
|
579 | (1) |
|
31.7 Selectivity, without optimality |
|
|
580 | (2) |
|
31.8 Isospectral, nonisometric manifolds |
|
|
582 | (3) |
|
|
585 | (6) |
IV Geometry and topology |
|
|
|
591 | (14) |
|
32.1 Quaternion unit groups |
|
|
591 | (1) |
|
|
592 | (2) |
|
32.3 Units in definite quatemion orders |
|
|
594 | (2) |
|
32.4 Finite subgroups of quatemion unit groups |
|
|
596 | (1) |
|
|
597 | (2) |
|
|
599 | (2) |
|
32.7 Exceptional subgroups |
|
|
601 | (1) |
|
|
602 | (3) |
|
|
605 | (24) |
|
33.1 The beginnings of hyperbolic geometry |
|
|
605 | (1) |
|
|
606 | (2) |
|
|
608 | (3) |
|
33.4 Classification of isometries |
|
|
611 | (3) |
|
|
614 | (2) |
|
33.6 Hyperbolic area and the Gauss-Bonnet formula |
|
|
616 | (2) |
|
33.7 Unit disc and Lorentz models |
|
|
618 | (3) |
|
|
621 | (3) |
|
|
624 | (5) |
|
34 Discrete group actions |
|
|
629 | (20) |
|
34.1 Topological group actions |
|
|
629 | (3) |
|
|
632 | (1) |
|
34.3 Covering space and wandering actions |
|
|
632 | (2) |
|
34.4 Hausdorff quotients and proper group actions |
|
|
634 | (3) |
|
34.5 Proper actions on a locally compact space |
|
|
637 | (2) |
|
34.6 Symmetric space model |
|
|
639 | (1) |
|
|
640 | (2) |
|
34.8 Riemann uniformization and orbifolds |
|
|
642 | (3) |
|
|
645 | (4) |
|
35 Classical modular group |
|
|
649 | (14) |
|
|
649 | (6) |
|
35.2 Binary quadratic forms |
|
|
655 | (2) |
|
|
657 | (1) |
|
35.4 Congruence subgroups |
|
|
658 | (2) |
|
|
660 | (3) |
|
|
663 | (22) |
|
|
663 | (2) |
|
|
665 | (4) |
|
36.3 Unit ball, Lorentz, and symmetric space models |
|
|
669 | (2) |
|
36.4 Bianchi groups and Kleinian groups |
|
|
671 | (1) |
|
|
672 | (4) |
|
36.6 Picard modular group |
|
|
676 | (4) |
|
|
680 | (5) |
|
|
685 | (30) |
|
37.1 Dirichlet domains for Fuchsian groups |
|
|
685 | (3) |
|
|
688 | (2) |
|
37.3 Generators and relations |
|
|
690 | (5) |
|
|
695 | (4) |
|
37.5 Hyperbolic Dirichlet domains |
|
|
699 | (1) |
|
37.6 Poincare's polyhedron theorem |
|
|
700 | (3) |
|
37.7 Signature of a Fuchsian group |
|
|
703 | (1) |
|
37.8 The (6, 4, 2)-triangle group |
|
|
704 | (3) |
|
37.9 Unit group for discriminant 6 |
|
|
707 | (5) |
|
|
712 | (3) |
|
38 Quaternionic arithmetic groups |
|
|
715 | (16) |
|
38.1 Rational quaternion groups |
|
|
715 | (2) |
|
38.2 Isometries from quaternionic groups |
|
|
717 | (2) |
|
|
719 | (2) |
|
38.4 Compactness and finite generation |
|
|
721 | (2) |
|
38.5 Arithmetic groups, more generally |
|
|
723 | (1) |
|
38.6 Modular curves, seen idelically |
|
|
724 | (2) |
|
|
726 | (3) |
|
|
729 | (2) |
|
|
731 | (14) |
|
|
731 | (3) |
|
|
734 | (2) |
|
|
736 | (1) |
|
|
737 | (4) |
|
|
741 | (4) |
V Arithmetic geometry |
|
|
40 Classical modular forms |
|
|
745 | (18) |
|
40.1 Functions on lattices |
|
|
745 | (4) |
|
40.2 Eisenstein series as modular forms |
|
|
749 | (3) |
|
40.3 Classical modular forms |
|
|
752 | (3) |
|
|
755 | (1) |
|
|
756 | (2) |
|
|
758 | (5) |
|
|
763 | (20) |
|
41.1 Brandt matrices, neighbors, and modular forms |
|
|
763 | (4) |
|
|
767 | (3) |
|
41.3 Commutativity of Brandt matrices |
|
|
770 | (3) |
|
|
773 | (2) |
|
41.5 Eichler trace formula |
|
|
775 | (4) |
|
|
779 | (4) |
|
42 Supersingular elliptic curves |
|
|
783 | (16) |
|
42.1 Supersingular elliptic curves |
|
|
783 | (4) |
|
42.2 Supersingular isogenies |
|
|
787 | (4) |
|
42.3 Equivalence of categories |
|
|
791 | (2) |
|
42.4 Supersingular endomorphism rings |
|
|
793 | (3) |
|
|
796 | (3) |
|
|
799 | (32) |
|
|
799 | (3) |
|
43.2 QM by discriminant 6 |
|
|
802 | (4) |
|
|
806 | (3) |
|
43.4 Complex abelian varieties |
|
|
809 | (5) |
|
43.5 Complex abelian surfaces |
|
|
814 | (3) |
|
43.6 Abelian surfaces with QM |
|
|
817 | (6) |
|
43.7 Real points, CM points |
|
|
823 | (1) |
|
|
824 | (2) |
|
|
826 | (2) |
|
|
828 | (3) |
Symbol Definition List |
|
831 | (8) |
Bibliography |
|
839 | (34) |
Index |
|
873 | |