Background and overview |
|
1 | (2) |
Chapter 0 Introduction |
|
3 | (4) |
Chapter 1 The major theorems and some background |
|
7 | (14) |
|
|
7 | (3) |
|
|
10 | (3) |
|
1.3 An outline of the proof |
|
|
13 | (6) |
|
|
19 | (2) |
Chapter 2 Some basic results |
|
21 | (32) |
|
|
21 | (6) |
|
|
27 | (7) |
|
2.3 Intrinsic SL2[ m]-components |
|
|
34 | (5) |
|
2.4 A sufficient condition for quaternion fusion packets |
|
|
39 | (1) |
|
2.5 Basic results on fusion packets |
|
|
39 | (2) |
|
2.6 The case z belongs to Z(F) |
|
|
41 | (4) |
|
|
45 | (3) |
|
2.8 Modules for groups with a strongly embedded subgroup |
|
|
48 | (5) |
Chapter 3 Results on τ |
|
53 | (26) |
|
|
54 | (10) |
|
|
64 | (2) |
|
|
66 | (6) |
|
|
72 | (7) |
Chapter 4 W(τ) and M(τ) |
|
79 | (16) |
|
4.1 3-transposition groups |
|
|
79 | (7) |
|
|
86 | (4) |
|
|
90 | (5) |
Chapter 5 Some examples |
|
95 | (42) |
|
|
96 | (6) |
|
5.2 The 2-share of the order of some groups |
|
|
102 | (3) |
|
5.3 Orthogonal groups and packets |
|
|
105 | (4) |
|
5.4 Linear, unitary, and symplectic groups and packets |
|
|
109 | (4) |
|
5.5 Exceptional groups and packets |
|
|
113 | (4) |
|
|
117 | (3) |
|
5.7 Lπd[ m] and ω(Ad-1,m) |
|
|
120 | (3) |
|
|
123 | (4) |
|
|
127 | (1) |
|
5.10 Some constrained examples |
|
|
128 | (4) |
|
|
132 | (3) |
|
|
135 | (2) |
Chapter 6 Theorems 2 and 4 |
|
137 | (36) |
|
|
137 | (3) |
|
6.2 Beginning the case z belongs to O2(F) |
|
|
140 | (6) |
|
6.3 The case e not < or = to NG(K) |
|
|
146 | (13) |
|
|
159 | (3) |
|
|
162 | (4) |
|
|
166 | (4) |
|
6.7 The proof of Theorem 2 |
|
|
170 | (3) |
Chapter 7 Theorems 3 and 5 |
|
173 | (22) |
|
|
173 | (11) |
|
|
184 | (9) |
|
|
193 | (2) |
Chapter 8 τ° not coconnected |
|
195 | (10) |
|
|
195 | (8) |
|
|
203 | (2) |
Chapter 9 Ω = Ω(z) of order 2 |
|
205 | (50) |
|
|
205 | (6) |
|
9.2 Generation when |Ω(z)| = 2 |
|
|
211 | (4) |
|
9.3 |Ω(z)| = 2 and Z union O(z) {z} |
|
|
215 | (8) |
|
9.4 |Ω(z)| = 2 and D*(z) = D(z) |
|
|
223 | (17) |
|
9.5 |Ω(z)| = 2 and μ isomorphic to S4 |
|
|
240 | (15) |
Chapter 10 |Ω(z)| > 2 |
|
255 | (14) |
|
10.1 |Ω(z)| = 4 and μ isomorphic to Weyl(D4) |
|
|
255 | (8) |
|
|
263 | (6) |
Chapter 11 Some results on generation |
|
269 | (36) |
|
11.1 |Ω(z)| = 2, μ isomorphic to Weyl(Dn), n > or = to 4 |
|
|
269 | (4) |
|
|
273 | (16) |
|
|
289 | (3) |
|
11.4 Essentials and normal subsystems |
|
|
292 | (3) |
|
11.5 Generating Ωbelongstod[ m] |
|
|
295 | (5) |
|
|
300 | (5) |
Chapter 12 |Ω(z)| = 2 and the proof of Theorem 6 |
|
305 | (36) |
|
12.1 |Ω(z)| = 2, μ isomorphic to Weyl(D4) |
|
|
305 | (7) |
|
|
312 | (13) |
|
12.3 Completing |Ω(z)| = 2 |
|
|
325 | (13) |
|
12.4 The proof of Theorem 6 |
|
|
338 | (1) |
|
|
339 | (2) |
Chapter 13 |&Omgea;(z)| = 1 and µ abelian |
|
341 | (34) |
|
13.1 Systems with µ abelian |
|
|
341 | (10) |
|
13.2 Generic systems with µ abelian |
|
|
351 | (9) |
|
13.3 Symplectic groups and systems |
|
|
360 | (2) |
|
13.4 Linear and unitary groups and systems |
|
|
362 | (4) |
|
13.5 Generating symplectic and linear systems |
|
|
366 | (5) |
|
|
371 | (4) |
Chapter 14 More generation |
|
375 | (10) |
|
|
375 | (4) |
|
14.2 A generation lemma for E8 |
|
|
379 | (6) |
Chapter 15 |Ω(z)| = 1 and µ, nonabelian |
|
385 | (48) |
|
|
385 | (4) |
|
|
389 | (10) |
|
|
399 | (4) |
|
|
403 | (7) |
|
|
410 | (9) |
|
15.6 Generating linear systems |
|
|
419 | (3) |
|
|
422 | (2) |
|
|
424 | (7) |
|
Theorem 1 and the Main Theorem |
|
|
431 | (2) |
Chapter 16 Proofs of four theorems |
|
433 | (6) |
|
16.1 The proof of Theorem 1 |
|
|
433 | (2) |
|
16.2 Proofs of the Main Theorem and Theorems 6, 7, and 8 |
|
|
435 | (1) |
|
|
436 | (3) |
References and Index |
|
439 | (2) |
Bibliography |
|
441 | (2) |
Index |
|
443 | |