Atnaujinkite slapukų nuostatas

El. knyga: "e;Golden"e; Non-euclidean Geometry, The: Hilbert's Fourth Problem, "e;Golden"e; Dynamical Systems, And The Fine-structure Constant

(Russian Academy Of Natural Sci, Russia), (Int'l Club Of The Golden Section, Canada & Academy Of Trinitarism, Russia)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Stakhov and Aranson trace the connection of the golden ratio, Fibonacci numbers, Lucas sequences, and Binets formulas with the golden hyperbolic Fibonacci and Lucas functions, Fibonacci -numbers, and metallic proportions. The primary result of their collaboration led to an unusual solution of Hilberts Forth Problems and ultimately to the justification of recursive, or golden non-Euclidean geometry. This challenges theorists in the natural scientists to discover these recursive non-Euclidean geometries in nature. Annotation ©2017 Ringgold, Inc., Portland, OR (protoview.com) This unique book overturns our ideas about non-Euclidean geometry and explains the role of the "golden ratio" in Euclids Elements. It highlights a new view on Euclids Elements and the history of mathematics based on Proclus hypothesis. It describes a general theory of "recursive" hyperbolic functions based on the "golden," "silver," and other "metallic" proportions. The book contains an original solution of Hilberts Fourth Problem for hyperbolic and spherical geometries, and puts forward a problem searching for new hyperbolic and spherical worlds of nature based on this solution. For the first time, the book describes the "golden" qualitative theory of dynamical systems based on the mathematics of harmony. It is intended for a wide range of readers, who are interested in the history of mathematics, non-Euclidean geometry, Hilberts mathematical problems and dynamical systems.
Preface vii
Introduction ix
About the Authors xv
Acknowledgments xvii
References to Front Matter xix
Chapter 1 The Golden Ratio, Fibonacci Numbers, and the "Golden" Hyperbolic Fibonacci and Lucas Functions
1(50)
1.1 The Idea of Harmony and the Golden Section in the History of Science
1(2)
1.2 Proclus' Hypothesis: A New View on Euclid's Elements and the History of Mathematics
3(7)
1.3 The Golden Ratio in Euclid's Elements
10(6)
1.4 The Algebraic Identities for the Golden Ratio
16(3)
1.5 Fibonacci Numbers
19(6)
1.6 Lucas Numbers
25(2)
1.7 Binet's Formulas
27(3)
1.8 The Theory of Fibonacci Numbers in Modern Mathematics
30(3)
1.9 The "Golden" Hyperbolic Fibonacci and Lucas Functions
33(12)
1.10 Hyperbolic Geometry of Phyllotaxis (Bodnar's Geometry)
45(6)
References
49(2)
Chapter 2 The Mathematics of Harmony and General Theory of Recursive Hyperbolic Functions
51(38)
2.1 The Mathematics of Harmony: The History, Generalizations and Applications of Fibonacci Numbers and Golden Ratio
51(5)
2.2 Algorithmic Measurement Theory as a Constructive Measurement Theory Based on the Abstraction of Potential Infinity
56(1)
2.3 Pascal's Triangle, Fibonacci p-Numbers, and Golden p-Proportions
57(2)
2.4 Fibonacci p-codes
59(1)
2.5 Codes of the Golden Proportion
59(1)
2.6 The Golden Number Theory
60(1)
2.7 Lucas Sequences
61(2)
2.8 The Fibonacci λ-numbers
63(4)
2.9 The Metallic Proportions
67(3)
2.10 Gazale's Formulas
70(5)
2.11 Hyperbolic Fibonacci and Lucas λ-functions
75(2)
2.12 The Partial Cases of the λ-Fibonacci and λ-Lucas Hyperbolic Functions
77(2)
2.13 The Most Important Formulas for the λ-Fibonacci and λ-Lucas Hyperbolic Functions
79(4)
2.14 A General Theory of the Recursive Hyperbolic Functions
83(2)
2.15 Conclusions for
Chapter 2
85(4)
References
86(3)
Chapter 3 Hyperbolic and Spherical Solutions of Hilbert's Fourth Problem: The Way to the Recursive Non-Euclidean Geometries
89(60)
3.1 Non-Euclidean Geometry
89(6)
3.2 Hilbert's Problems and Hilbert's Philosophy
95(2)
3.3 Klein's Icosahedral Idea
97(2)
3.4 Hilbert's Fourth Problem
99(3)
3.5 Hyperbolic Solution of Hilbert's Fourth Problem
102(20)
3.6 Spherical Fibonacci Functions
122(10)
3.7 Spherical Solution to Hilbert's Fourth Problem
132(1)
3.8 Comparative Table for Hyperbolic and Spherical Solutions of Hilbert's Fourth Problem
132(1)
3.9 Searching for New Recursive Hyperbolic and Spherical Worlds of Nature: A New Challenge for the Theoretical Natural Sciences
133(10)
3.10 Hilbert's Fourth Problem as a Possible Candidate for the Millennium Problem in Geometry
143(6)
References
145(4)
Chapter 4 Introduction to the "Golden" Qualitative Theory of Dynamical Systems Based on the Mathematics of Harmony
149(58)
4.1 Beauty and Aesthetics of Mathematics
149(5)
4.2 Preliminaries
154(8)
4.3 Metallic Irrational Foliations without Singularities on the Two-dimensional Torus T2
162(11)
4.4 The Metallic Irrational Foliations with Four Needle Type Singularities on the Two-dimensional Sphere S2
173(6)
4.5 Anosov's Automorphisms (Hyperbolic Automorphisms) on the Two-dimensional Torus T2 and the Metallic Proportions
179(11)
4.6 Prospects for Further Development of the Qualitative Theory of Dynamical Systems, Based on the Mathematics of Harmony
190(17)
References
199(8)
Chapter 5 The Basic Stages of the Mathematical Solution to the Fine-Structure Constant Problem as a Physical Millennium Problem
207(54)
5.1 Physical Millennium Problems
207(2)
5.2 Classical Special Theory of Relativity
209(3)
5.3 Fibonacci Special Theory of Relativity
212(10)
5.4 The Fine-Structure Constant a and Its Relationship with the Evolution of the Universe
222(22)
5.5 Quantitative Results of the Fibonacci Special Theory of Relativity from the Onset of the Big Bang T = 0 to any Time T [ Billion Years]
244(1)
5.6 Advantages of the Fibonacci Special Theory of Relativity in Comparison with the Classical Special Theory of Relativity
245(2)
5.7 The Ratio of the Proton Mass M to the Electron Mass m Depending on the Universe Evolution
247(2)
5.8 General Conclusions
249(12)
References
256(5)
Appendix: From the "Golden" Geometry to the Multiverse
261(18)
A.1 Conception of Multiverse
261(1)
A.2 The Conceptions and Theories used in this Study
262(3)
A.3 Mathematical Models of the Multiverse
265(3)
A.4 Fundamental Physical Constants of the A-Universes
268(3)
A.5 The Mathematics of Harmony as an Essential Part of Mathematical Physics
271(8)
References
275(4)
Index 279