Atnaujinkite slapukų nuostatas

El. knyga: Radial Flow Turbocompressors: Design, Analysis, and Applications

  • Formatas: PDF+DRM
  • Išleidimo metai: 10-Jun-2021
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108271462
  • Formatas: PDF+DRM
  • Išleidimo metai: 10-Jun-2021
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108271462

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience, the authors provide descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with illustrative examples. Features wide coverage of all types of radial compressor over many applications unified by the consistent use of dimensional analysis. Discusses the methods needed to analyse the performance, flow, and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Includes explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field and those just entering it.

An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field as well as those just entering it.

Recenzijos

' the book provides expert description of each of the topics considered and is in my view a highly useful text and essential reading for any advanced practitioner in the field of radial turbomachinery and I recommend it to you most highly.' Peter Childs, Journal of Power and Energy

Daugiau informacijos

An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors.
Credits xii
Introduction xiii
Preface xvii
Acknowledgements xix
Conventions and Nomenclature xxi
1 Introduction to Radial Flow Turbocompressors 1(43)
1.1 Overview
1(1)
1.2 Definition of Turbomachinery
2(7)
1.3 Classification of Turbomachines
9(5)
1.4 Short History of Thermal Turbomachines
14(1)
1.5 Components of Radial Flow Turbocompressors
15(9)
1.6 Applications of Centrifugal Turbocompressors
24(16)
1.7 Some Other Publications
40(4)
2 Energy Transfer 44(43)
2.1 Overview
44(1)
2.2 The Euler Turbine Equation
45(10)
2.3 The First Law of Thermodynamics
55(6)
2.4 The Steady Flow Energy Equation
61(5)
2.5 The Second Law of Thermodynamics
66(3)
2.6 Energy Transfer in Radial Turbocompressors
69(5)
2.7 Different Ideal Compression Processes
74(7)
2.8 The Aerodynamic Work
81(4)
2.9 The Compressor Stage as the Sum of Its Components
85(2)
3 Equations of State 87(19)
3.1 Overview
87(1)
3.2 Equations of State for Perfect Fluids
88(4)
3.3 Equations of State for Real Gases
92(7)
3.4 The Aungier-Redlich-Kwong Cubic Equation of State
99(2)
3.5 Isentropic and Polytropic Processes with Real Gases
101(2)
3.6 The Aerodynamic Work with Real Gases
103(3)
4 Efficiency Definitions for Compressors 106(29)
4.1 Overview
106(1)
4.2 Compressor Efficiency
107(4)
4.3 Isentropic Efficiency
111(7)
4.4 Polytropic Efficiency
118(11)
4.5 The Impeller Wheel Efficiency
129(1)
4.6 External Losses and Sideloads
130(1)
4.7 Efficiency in Diabatic Processes
130(4)
4.8 Efficiency Definitions for Real Gases
134(1)
5 Fluid Mechanics 135(56)
5.1 Overview
135(1)
5.2 The Laws of Fluid Mechanics
136(6)
5.3 Pressure Gradients in Fluid Flows
142(6)
5.4 Coriolis and Centrifugal Forces in Impellers
148(7)
5.5 Boundary Layers and End-Wall Flows
155(16)
5.6 Secondary Flows
171(5)
5.7 Tip Clearance Flows
176(4)
5.8 Jet-Wake Flow in Impellers
180(11)
6 Gas Dynamics 191(19)
6.1 Overview
191(1)
6.2 Gas Dynamics of Ideal Gases
191(8)
6.3 Shock and Expansion Waves
199(4)
6.4 Shock Structure in Transonic Compressors
203(3)
6.5 Gas Dynamics of Real Gases
206(4)
7 Aerodynamic Loading 210(37)
7.1 Overview
210(1)
7.2 Isolated Aerofoils
211(8)
7.3 Profiles in Cascade
219(7)
7.4 Diffusers
226(10)
7.5 Blade Loading Parameters
236(11)
8 Similarity 247(37)
8.1 Overview
247(1)
8.2 Similarity of Fluid Flows
248(4)
8.3 Geometric Similarity
252(1)
8.4 Fluid Dynamic Similarity
253(8)
8.5 Thermodynamic Similarity
261(4)
8.6 Applications of Similarity Parameters
265(13)
8.7 Performance Corrections for Deviation from Similarity
278(6)
9 Specific Speed 284(13)
9.1 Overview
284(1)
9.2 Specific Speed and Specific Diameter
284(6)
9.3 The Cordier Diagram
290(7)
10 Losses and Performance 297(41)
10.1 Overview
297(1)
10.2 The Definition of Losses
298(5)
10.3 Viscous Loss Mechanisms
303(10)
10.4 Other Aerodynamic Losses
313(5)
10.5 Loss Correlations in Centrifugal Stages
318(2)
10.6 Parasitic Losses
320(5)
10.7 Global Estimate for Aerodynamic Efficiency at the Design Point
325(5)
10.8 Mean-Line Calculation of the Flow Conditions through the Stage
330(8)
11 Impeller Design 338(67)
11.1 Overview
338(1)
11.2 Impeller Design
339(1)
11.3 Impeller Types
340(3)
11.4 Flow Conditions at the Impeller Inlet
343(12)
11.5 Flow Conditions at the Impeller Throat
355(3)
11.6 Flow Conditions at Impeller Outlet
358(18)
11.7 The Compressor Characteristic as Influenced by Losses and Work
376(2)
11.8 Guidelines to Detailed Impeller Design
378(9)
11.9 Three-Dimensional Features
387(3)
11.10 Impeller Families
390(3)
11.11 Impeller Trim
393(4)
11.12 Comparison with Rotors of Other Machine Types
397(8)
12 Diffuser Design 405(38)
12.1 Overview
405(1)
12.2 Effect of the Flow at the Impeller Outlet
406(6)
12.3 Vaneless Diffusers
412(5)
12.4 Vaned Diffusers
417(6)
12.5 Ideal Pressure Recovery in a Vaned Diffuser
423(1)
12.6 Zones of Pressure Recovery in a Vaned Diffuser
424(2)
12.7 Vaneless Space and Semivaneless Space
426(2)
12.8 Blockage at the Throat in Diffuser Channels
428(2)
12.9 Matching the Diffuser Throat with the Impeller
430(3)
12.10 Wedge Diffuser Channels
433(2)
12.11 Cascade Diffuser Channels
435(5)
12.12 Pipe Diffusers
440(1)
12.13 Downstream Semivaneless Space and Vaneless Space
441(1)
12.14 Special Cases
441(2)
13 Casing Component Design 443(23)
13.1 Overview
443(1)
13.2 Casing and Rotor Configurations
444(2)
13.3 Inlet or Suction Nozzle
446(1)
13.4 Intermediate Inlet Nozzles
447(1)
13.5 Inlet Guide Vanes
448(1)
13.6 Outlet Volute
449(6)
13.7 Return Channel System
455(4)
13.8 Deswirl Vanes
459(2)
13.9 Axial Thrust
461(5)
14 Geometry Definition 466(14)
14.1 Overview
466(1)
14.2 Coordinate Systems for Turbomachinery
466(2)
14.3 Axisymmetric and Blade-to-Blade Stream Surfaces in Radial Compressors
468(2)
14.4 Geometry Definition of Flow Channels
470(8)
14.5 Geometry Definition of Blades and Vanes
478(2)
15 Throughflow Code for Radial Compressors 480(48)
15.1 Overview
480(1)
15.2 A Preliminary Overview of the Throughflow Method
481(8)
15.3 Notation for the Blade Angles of the Velocity Gradient Equation
489(3)
15.4 The Throughflow Equation of Motion
492(5)
15.5 Streamline Curvature Velocity Gradient Equation
497(7)
15.6 The Iterative Scheme
504(2)
15.7 Empirical Modifications
506(2)
15.8 Spanwise Mixing
508(5)
15.9 Pressure Gradient from Blade Force
513(2)
15.10 Choking
515(11)
15.11 Use of Throughflow in Design
526(2)
16 Computational Fluid Dynamics 528(37)
16.1 Overview
528(1)
16.2 Historical Background to Turbomachinery CFD
529(7)
16.3 The Governing Equations
536(1)
16.4 The Modern Numerical Method
537(9)
16.5 Stage Calculations with Interface Planes
546(4)
16.6 Turbulence Models
550(4)
16.7 Quality and Trust
554(6)
16.8 Checklists for the Design Process with CFD
560(5)
17 Compressor Instability and Control 565(36)
17.1 Overview
565(1)
17.2 Instabilities in Compressors
566(18)
17.3 Off-Design Operation of Radial Compressors
584(3)
17.4 Typical Operating Range of Single-Stage Radial Turbocompressors
587(3)
17.5 Stability Control and Enhancement
590(11)
18 Maps and Matching 601(42)
18.1 Overview
601(1)
18.2 Methods of Map Prediction
602(3)
18.3 Map Prediction for Single Stages
605(14)
18.4 Apparent Efficiency Due to Heat Transfer Effects
619(1)
18.5 Extrapolation of a Measured Map
620(4)
18.6 Map Prediction for Multiple Stages
624(4)
18.7 Matching of the Diffuser with the Impeller
628(1)
18.8 Matching in Multistage Compressors
629(2)
18.9 Matching of the Compressor to a Turbine in a Gas Turbine
631(3)
18.10 Matching Issues of a Compressor in a Turbocharger
634(9)
19 Structural Integrity 643(45)
19.1 Overview
643(1)
19.2 Open or Closed Impellers
644(1)
19.3 Impeller Manufacturing and Materials
645(4)
19.4 Introduction to Static Blade Loading of Impellers
649(3)
19.5 Introduction to Dynamic Blade Loading of Impellers
652(8)
19.6 Computational Methods
660(1)
19.7 Design Data for Mechanical Analysis
661(4)
19.8 Assessment of Fatigue
665(1)
19.9 Vibrational Considerations
666(7)
19.10 Disc Design
673(2)
19.11 Assembly Designs
675(2)
19.12 Rotordynamics
677(7)
19.13 Rotor Modelling
684(4)
20 Development and Testing 688(27)
20.1 Overview
688(1)
20.2 Design and Development for Centrifugal Compressors
688(10)
20.3 Compressor Testing
698(4)
20.4 Basic Research and Development Tests
702(6)
20.5 Instrumentation and Measurements
708(6)
20.6 Determination of Stall and Surge
714(1)
References 715(37)
Index 752
Michael Casey is a director of PCA Engineers Limited, and was previously a Professor of Thermal Turbomachinery at Stuttgart University specializing in radial compressor design. Chris Robinson is Managing Director at PCA Engineers Limited.