Atnaujinkite slapukų nuostatas

El. knyga: Radiation Detection: Concepts, Methods, and Devices

(Kansas State University, Manhattan, USA),
  • Formatas: 1312 pages
  • Išleidimo metai: 19-Aug-2020
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781000038606
  • Formatas: 1312 pages
  • Išleidimo metai: 19-Aug-2020
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781000038606

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information.

This book generally has five main themes:











Physics and Electrostatics needed to Design Radiation Detectors





Properties and Design of Common Radiation Detectors





Description and Modeling of the Different Types of Radiation Detectors





Radiation Measurements and Subsequent Analysis





Introductory Electronics Used for Radiation Detectors

Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
Preface xxi
About the Authors xxv
1 Origins
1(18)
1.1 A Brief History of Radiation Discovery
1(9)
1.2 A Brief History of Radiation Detectors
10(9)
2 Introduction to Nuclear Instrumentation
19(18)
2.1 Introduction
19(1)
2.2 The Detector
20(1)
2.3 Nuclear Instrumentation
21(1)
2.4 History of NIM Development
21(2)
2.5 NIM Components
23(8)
2.5.1 The NIM Bin
23(1)
2.5.2 Detector Power Supplies
24(2)
2.5.3 Preamplifier
26(1)
2.5.4 Amplifier
27(1)
2.5.5 Oscilloscope
27(1)
2.5.6 Pulse Discriminators
27(1)
2.5.7 Counter/Timer
28(1)
2.5.8 Pulse Generator
28(1)
2.5.9 Coincidence Modules
28(1)
2.5.10 Time-to-Amplitude Converters
29(1)
2.5.11 Analog-to-Digital Converters
29(1)
2.5.12 Photomultiplier Tube Base
29(1)
2.5.13 Multichannel Analyzer
29(1)
2.5.14 Other NIM Components
30(1)
2.6 CAMAC
31(1)
2.7 Nuclear Instruments other than NIM or CAMAC
31(1)
2.8 Cables and Connectors
31(6)
2.8.1 Cables
32(1)
2.8.2 Delay Lines
33(1)
2.8.3 Connectors
33(4)
3 Basic Atomic and Nuclear Physics
37(56)
3.1 Modern Physics Concepts
37(4)
3.1.1 The Special Theory of Relativity
37(1)
3.1.2 Principle of Relativity
38(1)
3.1.3 Results of the Special Theory of Relativity
39(2)
3.2 Highlights in the Evolution of Atomic Theory
41(6)
3.2.1 Radiation as Waves and Particles
42(1)
3.2.2 Early Observations
42(1)
3.2.3 The Photoelectric Effect
42(2)
3.2.4 Compton Scattering
44(1)
3.2.5 Electromagnetic Radiation: Wave-Particle Duality
45(1)
3.2.6 Electron Scattering
46(1)
3.3 Development of the Modern Atom Model
47(7)
3.3.1 Discovery of Radioactivity
47(1)
3.3.2 Thomson's Atomic Model: The Plum Pudding Model
48(1)
3.3.3 The Rutherford Atomic Model
49(1)
3.3.4 The Bohr Atomic Model
49(3)
3.3.5 Extension of the Bohr Theory: Elliptic Orbits
52(1)
3.3.6 The Quantum Mechanical Model of the Atom
53(1)
3.3.7 Wave-Particle Duality
54(1)
3.4 Quantum Mechanics
54(10)
3.4.1 Schrodinger's Wave Equation
54(1)
3.4.2 The Wave Function
55(1)
3.4.3 The Uncertainty Principle
56(1)
3.4.4 Particle in a Potential Well
56(4)
3.4.5 The Hydrogen Atom
60(2)
3.4.6 Energy Levels for Multielectron Atoms
62(2)
3.4.7 Success of Quantum Mechanics
64(1)
3.5 The Fundamental Constituents of Ordinary Matter
64(7)
3.5.1 Dark Matter and Energy
66(1)
3.5.2 Atomic and Nuclear Nomenclature
67(1)
3.5.3 Relative Atomic Masses
68(1)
3.5.4 The Atomic Mass Unit
68(1)
3.5.5 Avogadro's Number
69(1)
3.5.6 Mass of an Atom
69(1)
3.5.7 Number Density of Atoms and Isotopes
69(1)
3.5.8 Size of an Atom
70(1)
3.5.9 Nuclear Dimensions
70(1)
3.6 Nuclear Reactions
71(2)
3.6.1 Q-Value for a Reaction
71(1)
3.6.2 Conservation of Charge and the Calculation of Q-Values
72(1)
3.6.3 Special Case for Changes in the Proton Number
73(1)
3.7 Radioactivity
73(20)
3.7.1 Types of Radioactive Decay
74(1)
3.7.2 Radioactive Decay Diagrams
74(2)
3.7.3 Energetics of Radioactive Decay
76(8)
3.7.4 Exponential Decay
84(1)
3.7.5 The Half-Life
85(1)
3.7.6 Decay Probability for a Finite Time Interval
85(1)
3.7.7 Mean Lifetime
86(1)
3.7.8 Activity
86(1)
3.7.9 Decay by Competing Processes
87(1)
3.7.10 Decay Dynamics
87(6)
4 Radiation Interactions
93(60)
4.1 Introduction
93(1)
4.2 Indirectly Ionizing Radiation
93(6)
4.2.1 Attenuation of Neutral Particle Beams
93(1)
4.2.2 The Linear Interaction Coefficient
94(1)
4.2.3 Attenuation of Uncollided Radiation
95(1)
4.2.4 Average Travel Distance Before an Interaction
96(1)
4.2.5 Half-Thickness
96(1)
4.2.6 Microscopic Cross Sections
96(1)
4.2.7 Calculation of Radiation Interaction Rates
97(2)
4.3 Scattering Interactions
99(7)
4.3.1 Differential Scattering Coefficients
99(1)
4.3.2 Conservation Laws for Scattering Reactions
100(1)
4.3.3 Scattering of Photons by Free Electrons
101(1)
4.3.4 Scattering of Neutrons by Atomic Nuclei
102(1)
4.3.5 Threshold Energies for Neutron Inelastic Scattering
103(1)
4.3.6 Neutron Scattering in the Center-of-Mass System
104(1)
4.3.7 Limiting Cases in Classical Mechanics of Elastic Scattering
105(1)
4.3.8 Relativistic Elastic Scattering of Electrons and Heavy Charged Particles
106(1)
4.4 Photon Cross Sections
106(10)
4.4.1 Thomson Cross Section for Incoherent Scattering
107(1)
4.4.2 Klein-Nishina Cross Section for Incoherent Scattering
107(5)
4.4.3 Incoherent Scattering Cross Sections for Bound Electrons
112(1)
4.4.4 Coherent (Rayleigh) Scattering
112(1)
4.4.5 Photoelectric Effect
112(2)
4.4.6 Pair Production
114(1)
4.4.7 Photon Interactions--Minor Effects
115(1)
4.4.8 Photon Attenuation Coefficients
116(1)
4.5 Neutron Interactions
116(10)
4.5.1 Classification of Types of Interactions
117(4)
4.5.2 Thermal Neutron Interactions
121(2)
4.5.3 Neutron Differential Scattering Cross Sections
123(1)
4.5.4 Average Energy Transfer in Neutron Scattering
124(1)
4.5.5 Radiative Capture of Neutrons
125(1)
4.5.6 Neutron-Induced Fission
126(1)
4.6 Charged-Particle Interactions
126(27)
4.6.1 Collisional Energy Loss
127(3)
4.6.2 Radiative Energy Loss
130(1)
4.6.3 Estimating Charged-Particle Ranges
131(1)
4.6.4 Electron Energy Loss and Range
132(4)
4.6.5 Spatial Distribution of the Electron Energy Absorption
136(3)
4.6.6 Heavy Charged-Particle Energy Loss
139(1)
4.6.7 Heavy Charged-Particle Range
140(3)
4.6.8 The Bragg Curve
143(1)
4.6.9 Approximate Range Formula for Charged Particles
144(3)
4.6.10 Range of Fission Fragments
147(6)
5 Sources of Radiation
153(30)
5.1 Introduction
153(1)
5.1.1 Origins of Ionizing Radiation
153(1)
5.1.2 Physical Characterization of Radiation Sources
154(1)
5.2 Sources of Gamma Rays
154(5)
5.2.1 Naturally Occurring Radionuclides
155(2)
5.2.2 Prompt Fission Gamma Photons
157(1)
5.2.3 Fission-Product Gamma Photons
157(1)
5.2.4 Capture Gamma Photons
158(1)
5.2.5 Inelastic Scattering Gamma Photons
159(1)
5.2.6 Activation Gamma Photons
159(1)
5.2.7 Positron Annihilation Photons
159(1)
5.3 Sources of X Rays
159(9)
5.3.1 Characteristic X Rays
161(2)
5.3.2 Bremsstrahlung
163(3)
5.3.3 X-Ray Machines
166(2)
5.3.4 Synchrotron X Rays
168(1)
5.4 Sources of Neutrons
168(6)
5.4.1 Fission Neutrons
168(1)
5.4.2 Fusion Neutrons
169(1)
5.4.3 Photoneutrons
170(2)
5.4.4 Alpha-Neutron Sources
172(1)
5.4.5 Activation Neutrons
173(1)
5.4.6 Spallation Neutron Sources
173(1)
5.5 Sources of Charged Particles
174(5)
5.5.1 Beta Decay
174(2)
5.5.2 Alpha Decay
176(1)
5.5.3 Photon Interactions
177(1)
5.5.4 Neutron Interactions
178(1)
5.5.5 Accelerators
179(1)
5.6 Cosmic Rays
179(4)
5.6.1 High Energy Gamma Rays
180(3)
6 Probability and Statistics for Radiation Counting
183(60)
6.1 Introduction
183(2)
6.1.1 Types of Measurement Uncertainties
184(1)
6.1.2 Probability and Statistics
184(1)
6.2 Probability and Cumulative Distribution Functions
185(1)
6.2.1 Continuous Random Variable
185(1)
6.2.2 Discrete Random Variable
185(1)
6.3 Mode, Mean and Median
185(2)
6.3.1 Mode
186(1)
6.3.2 Mean
186(1)
6.3.3 Median
187(1)
6.4 Variance and Standard Deviation of a PDF
187(1)
6.5 Probability Data Distribution
188(8)
6.5.1 Sample Mean
189(2)
6.5.2 Sample Median
191(2)
6.5.3 Trimmed Sample Mean
193(1)
6.5.4 Sample Variance
194(2)
6.6 Binomial Distribution
196(4)
6.6.1 Radioactive Decay and the Binomial Distribution
199(1)
6.7 Poisson Distribution
200(4)
6.8 Gaussian or Normal Distribution
204(10)
6.8.1 Standard Normal Distribution
207(2)
6.8.2 Cumulative Normal Distribution and the Error Function
209(2)
6.8.3 Discrete Gaussian Distribution
211(1)
6.8.4 The Normal Distribution in Radiation Measurements
212(2)
6.9 Error Propagation
214(13)
6.9.1 A Measurement is Scaled by a Constant
217(1)
6.9.2 Random Variables are Added or Subtracted
218(1)
6.9.3 Random Variables are Multiplied or Divided
219(2)
6.9.4 Random Variables in Exponents or Logarithms
221(1)
6.9.5 A Series of Radiation Measurements
222(2)
6.9.6 Measurements Over Different Time Intervals
224(3)
6.9.7 Caution about Error Propagation
227(1)
6.10 Data Interpretation
227(16)
6.10.1 Radiation Detection Limits
229(4)
6.10.2 Chi-Square Test for "Goodness" of Data
233(3)
6.10.3 Presentation of Data
236(2)
6.10.4 Concluding Remarks
238(5)
7 Source and Detector Effects
243(38)
7.1 Detector Efficiency
243(2)
7.2 Source Effects
245(9)
7.2.1 Alpha Particles
246(4)
7.2.2 Beta Particles
250(3)
7.2.3 Penetrating Radiations (γ rays, x rays, neutrons)
253(1)
7.2.4 Source Decay During Measurement
253(1)
7.2.5 Contamination
254(1)
7.3 Detector Effects
254(13)
7.3.1 Scattering and Absorption by the Detector Window
254(1)
7.3.2 Time Interval Distribution between Radioactive Decays
255(1)
7.3.3 Dead Time
255(2)
7.3.4 Models for Dead Time
257(3)
7.3.5 Counting Error Associated with Dead Time
260(1)
7.3.6 Methods for Measuring Dead Time
261(6)
7.4 Geometric Effects: View Factors
267(7)
7.4.1 Point Isotropic Sources
268(4)
7.4.2 Isotropic Area Sources
272(2)
7.4.3 Monte Carlo Approach to View Factor Angle Calculations
274(1)
7.5 Geometric Corrections: Detector Parallax Effects
274(7)
7.5.1 Attenuation and Scattering Effects Outside the Detector
276(5)
8 Essential Electrostatics
281(24)
8.1 Electric Field
281(3)
8.1.1 Alternate Derivation of Gauss' Law
284(1)
8.2 Electrical Potential Energy
284(2)
8.3 Capacitance
286(1)
8.4 Current and Stored Energy
287(1)
8.5 Basics of Charge Induction
288(2)
8.5.1 Green's Reciprocation Theorem
290(1)
8.6 Charge Induction for a Planar Detector
290(10)
8.6.1 Planar Detector with Stationary Space Charge
294(4)
8.6.2 A Planar Detector Composed of Two Materials
298(2)
8.7 Charge Induction for a Cylindrical Detector
300(1)
8.8 Charge Induction for Spherical and Hemispherical Detectors
301(2)
8.9 Concluding Remarks
303(2)
9 Gas-Filled Detectors: Ion Chambers
305(50)
9.1 General Operation
305(2)
9.2 Electrons and Ions in Gas
307(14)
9.2.1 Ionization
307(2)
9.2.2 Diffusion Effects
309(3)
9.2.3 Electron and Ion Transport
312(5)
9.2.4 Charge Transfer
317(1)
9.2.5 Electron Attachment
318(3)
9.3 Recombination
321(9)
9.3.1 Columnar Recombination
321(2)
9.3.2 Volumetric Recombination
323(6)
9.3.3 Preferential Recombination
329(1)
9.4 Ion Chamber Operation
330(10)
9.4.1 Planar Ion Chambers
331(6)
9.4.2 Coaxial Ion Chambers
337(3)
9.5 Ion Chamber Designs
340(11)
9.5.1 Basic Designs and Characteristics
341(2)
9.5.2 Gamma-Ray Ion Chamber Designs
343(1)
9.5.3 Neutron-Sensitive Ion Chambers
344(1)
9.5.4 Compensated Ion Chambers
344(1)
9.5.5 Frisch Grid Ion Chambers
345(1)
9.5.6 Free Air Ion Chambers
346(1)
9.5.7 Pocket Ion Chambers
347(1)
9.5.8 Cloud Chambers
348(3)
9.5.9 Smoke Detector Ionization Chambers
351(1)
9.6 Summary
351(4)
10 Gas-Filled Detectors: Proportional Counters
355(48)
10.1 Introduction
355(1)
10.2 General Operation
356(1)
10.3 Townsend Avalanche Multiplication
357(7)
10.3.1 The Rose-Korff Formula for M
358(4)
10.3.2 The Diethorn Formula for M
362(1)
10.3.3 The Zastawny Formula for M
363(1)
10.3.4 The Kowalski Formula for M
364(1)
10.4 Gas Dependence
364(4)
10.4.1 Quenching Gas
365(2)
10.4.2 Penning Mixtures
367(1)
10.5 Proportional Counter Operation
368(18)
10.5.1 Pulse Shape
369(4)
10.5.2 Space Charge Effects
373(1)
10.5.3 Counting Curve
373(4)
10.5.4 Fluctuations of the Gas Multiplication Process
377(9)
10.6 Selected Proportional Counter Variations
386(17)
10.6.1 Gas-Flow Proportional Counters
386(3)
10.6.2 Sealed Proportional Counters
389(1)
10.6.3 Proportional Counters for Low Energy Gamma-Rays
390(1)
10.6.4 Position Sensitive Proportional Counters
391(1)
10.6.5 Multiwire Proportional Counters
392(2)
10.6.6 Microstrip Gas Chambers
394(2)
10.6.7 Straw Tubes
396(1)
10.6.8 Gas Electron Multiplier
397(1)
10.6.9 Neutron-Sensitive Proportional Counters
397(1)
10.6.10 Selected Planar Proportional Counters
398(5)
11 Gas-Filled Detectors: Geiger-Muller Counters
403(20)
11.1 Geiger Discharge
403(1)
11.2 Basic Design
404(2)
11.3 Fill Gases
406(4)
11.3.1 Quenching
407(3)
11.4 Pulse Shape
410(2)
11.4.1 Dead, Resolving, and Recovery Times
411(1)
11.5 Radiation Measurements
412(4)
11.5.1 Counting Plateau
412(2)
11.5.2 Alpha and Beta Particle Counting
414(1)
11.5.3 Gamma-Ray Detection
415(1)
11.6 Special G-M Counter Designs
416(1)
11.7 Commercial G-M Counters
417(6)
12 Review of Solid State Physics
423(58)
12.1 Introduction
423(1)
12.2 Solid State Physics
423(9)
12.2.1 Crystals and Periodic Lattices
423(1)
12.2.2 Bravais Lattice
424(2)
12.2.3 Miller Indices
426(3)
12.2.4 Reciprocal Lattice
429(1)
12.2.5 Energy Band Gap
430(2)
12.3 Quantum Mechanics
432(6)
12.3.1 Potential Barriers
432(4)
12.3.2 Kronig-Penney Model
436(2)
12.4 Semiconductor Physics
438(11)
12.4.1 Brillouin Zones
438(1)
12.4.2 Effective Mass
439(10)
12.5 Charge Transport
449(29)
12.5.1 Charge Carrier Mobility
456(1)
12.5.2 Material Resistivity and Capacity
457(1)
12.5.3 Intrinsic Semiconductors
458(7)
12.5.4 Impurities and Extrinsic Semiconductors
465(13)
12.6 Summary
478(3)
13 Scintillation Detectors and Materials
481(84)
13.1 Scintillation Detectors
481(1)
13.2 Inorganic Scintillators
482(40)
13.2.1 Theory of Scintillation for Inorganic Scintillators
485(4)
13.2.2 General Properties of Inorganic Scintillators
489(13)
13.2.3 Properties of Several Common Inorganic Scintillators
502(20)
13.3 Organic Scintillators
522(26)
13.3.1 Theory of Scintillation for Organic Scintillators
523(9)
13.3.2 Organic Crystalline Scintillators
532(5)
13.3.3 Liquid Scintillators
537(9)
13.3.4 Plastic Scintillators
546(2)
13.4 Gaseous Scintillators
548(17)
13.4.1 Development of Gas Scintillator Counters
549(1)
13.4.2 Theory of Gas Scintillation Counters
550(1)
13.4.3 Factors Affecting Performance
551(1)
13.4.4 Mixtures of Noble Gases
552(1)
13.4.5 Liquid and Solid Noble Elements
553(1)
13.4.6 Gas Proportional Scintillation Counters
554(11)
14 Light Collection Devices
565(62)
14.1 Photomultiplier Tubes
565(46)
14.1.1 Basic Design
567(1)
14.1.2 Light Collection and Coupling
568(7)
14.1.3 Photocathode Materials and Design
575(11)
14.1.4 Dynode Materials
586(7)
14.1.5 PMT Dynode Designs and Configurations
593(6)
14.1.6 Gain
599(1)
14.1.7 Factors Affecting the Performance of a PMT
600(7)
14.1.8 Ancillary Equipment
607(4)
14.1.9 Environmental Effects
611(1)
14.2 Semiconductor Photodetectors
611(16)
14.2.1 Photodiodes
612(4)
14.2.2 Drift Diodes
616(1)
14.2.3 Avalanche Diodes
617(4)
14.2.4 Semiconductor Photomultipliers
621(6)
15 Basics of Semiconductor Detector Devices
627(78)
15.1 Introduction
627(1)
15.2 Charge Carrier Collection
627(7)
15.2.1 Charge Carrier Generation, Recombination and Injection
628(1)
15.2.2 Radiative Recombination
628(1)
15.2.3 Shockley-Read-Hall Recombination
629(2)
15.2.4 Equations of Continuity
631(3)
15.3 Basic Semiconductor Detector Configurations
634(37)
15.3.1 The pn Junction
635(10)
15.3.2 Pin Junction Devices
645(1)
15.3.3 Metal-Semiconductor Contacts
646(12)
15.3.4 The MOS Structure
658(5)
15.3.5 Ohmic Contacts
663(2)
15.3.6 Series Resistance and Space Charge Effects
665(3)
15.3.7 Resistive and Photoconductive Devices
668(2)
15.3.8 Photon Drag Detectors
670(1)
15.4 Measurements of Semiconductor Detector Properties
671(13)
15.4.1 IV Measurements
671(2)
15.4.2 CV Measurements
673(2)
15.4.3 Measurement of Contact Resistance
675(2)
15.4.4 Measurement of Resistivity
677(2)
15.4.5 Measurement of Charge Carrier Mobility
679(3)
15.4.6 Measurement of the μτ Product
682(2)
15.5 Charge Induction
684(21)
15.5.1 Charge Induction With Trapping
684(6)
15.5.2 Energy Resolution Improvement Methods and Designs
690(15)
16 Semiconductor Detectors
705(108)
16.1 Introduction
705(2)
16.2 General Semiconductor Properties
707(12)
16.2.1 Atomic Numbers and Mass Density
708(1)
16.2.2 Band Gap
709(1)
16.2.3 Ionization Energy
710(3)
16.2.4 Mobility
713(3)
16.2.5 Resistivity
716(1)
16.2.6 Mean Free Drift Time
717(1)
16.2.7 Linearity
717(2)
16.3 Semiconductor Detector Applications
719(3)
16.3.1 Charged Particle Detectors
719(1)
16.3.2 Gamma-Ray and X-Ray Detectors
719(2)
16.3.3 Neutron Detectors
721(1)
16.4 Detectors Based on Group IV Materials
722(45)
16.4.1 Detectors Based on Silicon
722(25)
16.4.2 Detectors Based on Ge
747(18)
16.4.3 Diamond Detectors
765(2)
16.5 Compound Semiconductor Detectors
767(26)
16.5.1 SiC Detectors
769(2)
16.5.2 Detectors Based on Group III-V Materials
771(6)
16.5.3 Detectors Based on Group II-VI Materials
777(10)
16.5.4 Detectors Based on Halide Compounds
787(6)
16.6 Additional Semiconductors of Interest
793(4)
16.7 Summary
797(16)
17 Slow Neutron Detectors
813(84)
17.1 Cross Sections in the 1/v Region
813(2)
17.2 Slow Neutron Reactions Used for Neutron Detection
815(7)
17.2.1 The 3Ffe Reaction
816(1)
17.2.2 The 10B Neutron Reaction
817(1)
17.2.3 The 8Li Neutron Reaction
818(1)
17.2.4 The 155Gd and 157Gd Neutron Reactions
819(1)
17.2.5 The 113Cd Neutron Reaction
820(1)
17.2.6 The 199Hg Neutron Reaction
820(1)
17.2.7 Fission Reactions
821(1)
17.3 Gas-Filled Slow Neutron Detectors
822(26)
17.3.1 Detectors with Neutron Absorbing Fill Gases
822(7)
17.3.2 Detectors with Neutron Reactive Coatings and Layers
829(19)
17.4 Scintillator Slow Neutron Detectors
848(7)
17.4.1 Neutron Reactive Scintillators
848(3)
17.4.2 Scintillators Loaded with Neutron Reactive Materials
851(4)
17.5 Semiconductor Slow Neutron Detectors
855(6)
17.5.1 Bulk Semiconductor Neutron Detectors
859(2)
17.6 Neutron Diffraction
861(5)
17.6.1 The Structure Factor for Crystals Fhki
863(1)
17.6.2 Angular Response to a Maxwellian Neutron Distribution
864(1)
17.6.3 Measurements with Diffracted Neutron Beams
865(1)
17.7 Calibration of Slow Neutron Detectors
866(4)
17.7.1 Method of the NIST
866(1)
17.7.2 Method of Reuter Stokes
867(1)
17.7.3 Method of ORNL
867(1)
17.7.4 Method of Sampson and Vincent
867(1)
17.7.5 Method of McGregor and Shultis
868(2)
17.8 Neutron Detection by Foil Activation
870(11)
17.8.1 Cadmium Ratio
874(1)
17.8.2 Measuring Activation Rates
875(1)
17.8.3 Flux Correction Factors
876(1)
17.8.4 Correction for Non-1/u Absorption
877(1)
17.8.5 Correction for Cadmium Filter Effects
877(1)
17.8.6 Correction for Flux Perturbation and Self-Shielding
878(3)
17.9 Self-Powered Neutron Detectors
881(6)
17.10 Time-of-Flight Methods
887(10)
18 Fast Neutron Detectors
897(52)
18.1 Detection Mechanisms
897(2)
18.1.1 Neutron Moderation and Scattering
897(1)
18.1.2 Multiscattered Neutrons
898(1)
18.1.3 Absorption
899(1)
18.2 Detectors Based on Moderation
899(11)
18.2.1 Bonner Spheres
899(5)
18.2.2 REM Counters
904(3)
18.2.3 Long Counter
907(2)
18.2.4 Directional Neutron Spectrometer
909(1)
18.2.5 Other Moderated Detectors
910(1)
18.3 Detectors Based on Recoil Scattering
910(21)
18.3.1 Gas Detectors Based on Recoil Scattering
913(5)
18.3.2 Unfolding the Recoil Energy Spectrum
918(1)
18.3.3 Scintillators Used in Recoil Neutron Scattering
919(12)
18.4 Semiconductor Fast Neutron Detectors
931(2)
18.5 Detectors Based on Absorption Reactions
933(9)
18.5.1 3He Detectors
933(2)
18.5.2 6LiI:Eu Scintillators
935(1)
18.5.3 6Li Sandwich
936(2)
18.5.4 The Grey Detector
938(1)
18.5.5 Cryogenic Detectors
938(1)
18.5.6 Foil Activation Methods
939(1)
18.5.7 The Foil Inversion Problem
940(2)
18.6 Summary
942(7)
19 Luminescent and Additional Detectors
949(86)
19.1 Luminescent Dosimeters
949(35)
19.1.1 Thermoluminescent Dosimeters
949(24)
19.1.2 Optically Stimulated Luminescent Dosimeters
973(11)
19.2 Photographic Film
984(7)
19.2.1 Basics of Photographic Film
985(1)
19.2.2 Photographic Film Characteristics
986(4)
19.2.3 Film Dosimetry Badges
990(1)
19.3 Track Detectors
991(16)
19.3.1 Nuclear Track Emulsions
991(2)
19.3.2 Track Etch Detectors
993(8)
19.3.3 Spark Chambers
1001(1)
19.3.4 Bubble Chambers
1002(2)
19.3.5 Superheated Drop Detectors
1004(3)
19.4 Cryogenic Detectors
1007(13)
19.4.1 Methods of Cooling
1008(1)
19.4.2 Cryogenic Microcalorimeters
1009(7)
19.4.3 Athermal Cryogenic Charge Detectors
1016(4)
19.5 Wavelength-Dispersive Spectroscopy
1020(1)
19.6 Cerenkov (Cherenkov) Detectors
1021(14)
20 Radiation Measurements and Spectroscopy
1035(75)
20.1 Introduction
1035(1)
20.2 Basic Concepts
1036(2)
20.3 Detector Response Models
1038(2)
20.4 Gamma-Ray Spectroscopy
1040(31)
20.4.1 Gamma-Ray and X-Ray Spectral Features
1041(10)
20.4.2 Spectral Response Function
1051(1)
20.4.3 Qualitative Analysis
1051(1)
20.4.4 Quantitative Analysis
1052(1)
20.4.5 Area Under an Isolated Peak
1053(1)
20.4.6 Linear Least Squares Method for a Straight Line
1054(3)
20.4.7 General Linear Least-Squares Model Fitting
1057(4)
20.4.8 Non-Linear Least-Squares Model Fitting
1061(6)
20.4.9 Spectrum Stripping
1067(1)
20.4.10 Library Least-Squares
1068(2)
20.4.11 Symbolic Monte Carlo
1070(1)
20.5 Radiation Spectroscopy Measurements
1071(17)
20.5.1 Channel Calibration
1071(1)
20.5.2 Quality Metrics
1072(6)
20.5.3 Detection and Spectroscopy with Scintillators
1078(8)
20.5.4 Spectroscopy with Semiconductors
1086(2)
20.6 Factors Affecting Energy Resolution
1088(2)
20.7 Experimental Design
1090(12)
20.7.1 Optimization of Measurement Time
1090(1)
20.7.2 Discernment Between Two Outcomes
1091(3)
20.7.3 Coincidence and Anti-Coincidence Measurements
1094(8)
20.8 Gamma-Ray Spectroscopy---Summary
1102(1)
20.9 Charged-Particle Spectroscopy
1103(7)
20.9.1 Electrons, Positrons, and Beta Particles
1103(3)
20.9.2 Alpha Particles
1106(3)
20.9.3 Heavy Ions
1109(1)
21 Mitigating Background
1110(45)
21.1 Sources of Background Radiation
1120(13)
21.1.1 Cosmic Radiation
1120(4)
21.1.2 Natural Occurring Radioactivity
1124(8)
21.1.3 Airborne Radioactivity
1132(1)
21.1.4 Modern Radiation Sources
1133(1)
21.2 Mitigation of the Radiation Background
1133(14)
21.2.1 Sample Placement
1136(1)
21.2.2 Minimize Radioactivity in the Detector System
1136(2)
21.2.3 Passive Shielding of Radiation Spectrometers
1138(1)
21.2.4 Shielding Against Gamma Rays
1139(3)
21.2.5 Shielding Against Neutrons
1142(1)
21.2.6 Minimize Radioactivity in Air around Spectrometer
1142(1)
21.2.7 Use Construction materials with Low Radioactivity
1143(1)
21.2.8 Counting Enclosures
1143(1)
21.2.9 Laboratory Location
1144(1)
21.2.10 Other Considerations
1145(2)
21.3 Self-Absorption of Photons
1147(3)
21.3.1 Infinite Slab
1147(2)
21.3.2 Infinite Cylinder
1149(1)
21.4 Electronic Methods for Background Reduction
1150(5)
21.4.1 Anti-coincident Background Reduction
1151(1)
21.4.2 Coincident Counting
1151(4)
22 Nuclear Electronics
1155(86)
22.1 Mathematical Transforms
1155(6)
22.1.1 The Fourier Transform
1156(1)
22.1.2 The Laplace Transform
1156(2)
22.1.3 Properties of the Laplace Transform
1158(2)
22.1.4 The Transfer Function
1160(1)
22.2 Pulse Shaping
1161(21)
22.2.1 Circuit Element Impedances
1162(3)
22.2.2 Operational Amplifier
1165(1)
22.2.3 The General Case for Feedback Transfer Function
1166(1)
22.2.4 Passive Low-Pass Filter
1166(2)
22.2.5 Active Low-Pass Filter
1168(1)
22.2.6 Passive High-Pass Filter
1169(6)
22.2.7 Active High-Pass Filter
1175(1)
22.2.8 CR-RC Network
1176(2)
22.2.9 (CR)2-RC Network
1178(1)
22.2.10 CR-(RC)n Network
1178(1)
22.2.11 Delay Line Pulse Shaping
1179(1)
22.2.12 Pole-Zero Cancellation
1180(1)
22.2.13 Base-Line Shift and Restoration
1181(1)
22.3 Components
1182(23)
22.3.1 Preamplifiers
1182(7)
22.3.2 Amplifiers
1189(6)
22.3.3 Integral Discriminators and Single Channel Analyzers
1195(2)
22.3.4 Counters (Scalers) and Timers
1197(1)
22.3.5 Ratemeter
1198(2)
22.3.6 Multichannel Analyzers
1200(3)
22.3.7 Pulse Generators
1203(1)
22.3.8 Power Supplies
1204(1)
22.4 Timing
1205(3)
22.4.1 Jitter and Time Walk
1205(1)
22.4.2 Common Timing Methods
1206(2)
22.5 Coincidence and Anti-Coincidence
1208(6)
22.5.1 Coincidence Analyzers
1209(3)
22.5.2 Time-to-Amplitude Converter
1212(2)
22.6 Instrumentation Standards
1214(9)
22.6.1 NIM Standard
1214(3)
22.6.2 CAMAC Standard
1217(4)
22.6.3 VMEbus Standard
1221(2)
22.7 Electronic Noise
1223(7)
22.7.1 Thermal or Johnson Noise
1225(1)
22.7.2 Shot Noise
1226(1)
22.7.3 Flicker or 1/f Noise
1226(1)
22.7.4 Detector Performance
1227(3)
22.8 Coaxial Cables
1230(11)
22.8.1 Basic Characteristics
1231(10)
A Fundamental Physical Data and Conversion Factors
1241(8)
A.1 Fundamental Physical Constants
1241(1)
A.2 The Periodic Table
1242(1)
A.3 Physical Properties and Abundances of Elements
1242(1)
A.4 SI Units
1243(1)
A.5 Internet Data Sources
1243(6)
B Cross Sections and Related Data
1249(20)
B.1 Data Tables
1249(20)
B.1.1 Thermal Neutron Interactions
1249(1)
B.1.2 Photon Interactions
1250(19)
Index 1269
Douglas S. McGregor is a University Distinguished Professor in Kansas State University (KSU) and holds the Boyd D. Brainard Chair in Mechanical and Nuclear Engineering. Professor McGregor serves as director of the Semiconductor Materials and Radiological Technologies Laboratory at KSU, a 9500 sq ft laboratory dedicated to radiation detector research.He has published over 200 research articles and reports, is co-inventor on over 20 radiation detector patents, and his research group has received five R&D-100 Awards for radiation detector innovations. Prof. McGregor is also the recipient of various other honors, including the KSU College of Engineering (CoE) Frankenhoff Outstanding Research Award (2006) and the CoE Engineering Distinguished Researcher Award (2016).

J. Kenneth Shultis joined the Nuclear Engineering faculty at Kansas State University in 1969 and where he presently holds the Black and Veatch Distinguished Professorship and is the Ike and Letty Conerstone teaching scholar.Besides being coauthor of this book he has coauthored the books Fundamentals of Nuclear Science and Engineering, Radiation Shielding, Radiological Assessment, Principles of Radiation Shielding, and Exploring Monte Carlo Methods.He is a Fellow of the American Nuclear Society (ANS), and has received many awards for his teaching and research, including the infrequently awarded ANS Rockwell Lifetime Achievement Award for his contributions over 50 years to the practice of radiation shielding.