Atnaujinkite slapukų nuostatas

El. knyga: Radiation Safety in Radiation Oncology [Taylor & Francis e-book]

(PSG Hospitals, Coimbatore, Tamil Nadu, India)
  • Formatas: 454 pages, 51 Tables, black and white; 112 Line drawings, black and white; 180 Halftones, black and white; 292 Illustrations, black and white
  • Išleidimo metai: 01-Aug-2017
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781315119656
Kitos knygos pagal šią temą:
  • Taylor & Francis e-book
  • Kaina: 170,80 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 244,00 €
  • Sutaupote 30%
  • Formatas: 454 pages, 51 Tables, black and white; 112 Line drawings, black and white; 180 Halftones, black and white; 292 Illustrations, black and white
  • Išleidimo metai: 01-Aug-2017
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781315119656
Kitos knygos pagal šią temą:

The proposed book aims to explain the basic principles, concepts and regulations behind radiation protection and their application in the field of radiation oncology practice. This book will be useful to all those students, teachers and practicing professionals involved in the field of radiation oncology namely a) the radiation oncology physicists b) therapy technologists c) radiation oncologists d) oncology nurses and e) regulators undergoing IAEA training in regulations. The main target audience for the book are the medical physics students doing undergraduate or graduate program in radiation oncology physics and the teachers who teach the subject in the academic institutions.

Foreword xix
Preface xxi
Acknowledgments xxv
Author xxvii
1 Basic Atomic and Nuclear Physics 1(24)
1.1 Introduction
1(1)
1.2 A Short Introduction to Atomic Structure
1(2)
1.3 The Filling of Sublevels
3(1)
1.4 A Short History of the Nucleus
4(1)
1.5 Properties of the Nucleus
5(13)
1.5.1 Nuclear Size
5(1)
1.5.2 Nuclear Mass
6(1)
1.5.3 Isotopes
6(1)
1.5.4 Binding Energies
7(1)
1.5.5 Fundamental Forces of Nature
8(2)
1.5.6 Nuclear Energy Levels
10(1)
1.5.7 Nuclear Stability and Radioactivity
11(1)
1.5.8 An Explanation for Radioactivity
12(5)
1.5.9 Radioactivity Decay Law
17(1)
1.6 Secular and Transient Equilibrium
18(3)
1.6.1 Nuclear Fission
19(2)
1.6.2 Nuclear Fusion
21(1)
References
21(1)
Review Questions
21(4)
2 Basic Medical Radiation Physics 25(70)
2.1 Introduction
25(1)
2.2 Classification of Radiation
26(1)
2.3 Energy Deposition Concept
26(1)
2.4 Types of Photon (Chi, gamma) Interactions
27(8)
2.4.1 Photoelectric Effect
28(2)
2.4.2 Compton Effect
30(2)
2.4.3 Pair Production
32(2)
2.4.4 Photonuclear Interactions
34(1)
2.5 Characterizing Radiation in Terms of Field Quantities
35(1)
2.6 Concept of Interaction Coefficients
36(5)
2.7 Concept of Kerma
41(4)
2.7.1 Fraction of Photon Energy Transferred to Electrons
41(4)
2.8 Concept of Collision Kerma
45(1)
2.9 Concept of Absorbed Dose
46(1)
2.10 Relating Kerma and Dose
47(3)
2.11 Dose and Kerma Profiles in a Phantom
50(3)
2.12 Interaction of Charged Particles with Matter
53(2)
2.12.1 Coulomb Electronic Collisions
54(1)
2.12.2 Coulomb (Nuclear) Collisions
55(1)
2.12.3 Nuclear Collisions in Nuclear Force Field
55(1)
2.13 Concept of Stopping Power
55(2)
2.13.1 Concept of Collision Stopping Power
55(2)
2.13.2 Concept of Radiative Stopping Power
57(1)
2.14 Stopping Power Expression for Heavy Charged Particles
57(1)
2.14.1 Shell Correction CKz
58(1)
2.14.2 Density Correction or Polarization Correction delta
58(1)
2.15 Stopping Power Expression for Electrons
58(3)
2.15.1 Angular Stopping Power
59(1)
2.15.2 Stopping Power Energy Dependence
60(1)
2.16 Radiative Stopping Power and Shielding for beta Sources
61(2)
2.17 Collision Stopping Power and Shielding of a Sources
63(1)
2.18 Concept of RSP and LET
64(1)
2.19 Relative Biological Effectiveness
65(1)
2.20 Range, Range Straggling, and Empirical Range Equation
66(3)
2.21 Absorbed Dose from Charged Particle Interactions
69(2)
2.22 Depth Dose Profile for Charged Particle Beams
71(4)
2.22.1 Depth Dose Distribution of Heavy Charged Particle Beams
72(1)
2.22.2 Depth Dose Distribution of Electron Beams
73(1)
2.22.3 Depth Dose Distribution of Photon Beams
74(1)
2.23 Neutron Production in Boron Capture Therapy
75(1)
2.24 Neutron Production in Fast Neutron Therapy
76(1)
2.25 Neutron Production in Linacs in Megavoltage X-Ray Therapy
76(5)
2.26 Mechanism of Neutron Production and Neutron Activation
81(4)
2.26.1 Linac-Produced Photoneutron Spectrum
81(1)
2.26.2 Photoneutron Spectrum at Linac Isocenter
82(2)
2.26.3 Neutron Production in Electron Mode
84(1)
2.26.4 Neutron Activation of Linac Head and Air in the Linac Room
84(1)
2.27 Neutron Production in Particle Therapy
85(1)
2.28 Neutron Interactions
85(5)
2.28.1 Elastic Scattering
86(1)
2.28.2 Inelastic Scattering
87(1)
2.28.3 Neutron Capture
87(1)
2.28.4 Other Neutron Interactions
88(2)
2.29 Energetics of Nuclear Reactions
90(1)
2.30 Neutron Absorbed Dose
90(2)
2.31 Neutron Dose Equivalent
92(1)
References
93(1)
Review Questions
93(2)
3 Evolution of Radiation Protection and Radiation Risk Concepts 95(22)
3.1 Introduction
95(1)
3.2 Invention of Fluoroscopy and Increase in Staff Injuries and Deaths
96(1)
3.3 Radium Hazards
97(1)
3.4 A Pioneer in Radiation Protection
98(1)
3.5 Tolerance Dose Concept (to Avoid Skin Injuries)
99(1)
3.6 Precursor to ICRP
100(1)
3.7 Concept of Maximum Permissible Dose
101(1)
3.8 Risks Other than Skin Injuries
102(1)
3.9 Introduction of Weekly Dose Limits
102(1)
3.10 Concept of RBE Dose
103(1)
3.11 Introduction of Quarterly and Annual Dose Limits
104(1)
3.12 Radiation Risk-Based Recommendations
105(1)
3.13 Radiation (Stochastic) Effects and Stochastic Risk
105(1)
3.14 Introduction of LNT Hypothesis
106(2)
3.15 Hereditary Effects
108(1)
3.16 Nonstochastic Effects
109(2)
3.17 Risk Estimates
111(2)
3.18 Radiation Effects (or Risks) to the Embryo and Fetus
113(1)
3.19 Medical Exposure of Pregnant Patients/Pregnant Radiation Workers
113(1)
References
114(1)
Review Questions
114(3)
4 Radiation Protection Quantities, Units, and Standards 117(40)
4.1 Introduction
117(1)
4.2 Physical Dosimetric Quantities
117(1)
4.3 Primary Dosimetric Standards
118(10)
4.3.1 Absorbed Dose Standards
118(1)
4.3.2 Exposure/Air Kerma Standards
119(4)
4.3.2.1 Primary Standard of Exposure or Air Kerma at kV Energy Range
119(2)
4.3.2.2 Primary Standard of Exposure or Air Kerma at MV (60Co) Energy Range
121(2)
4.3.3 Isotopic Neutron Source Standards
123(2)
4.3.4 Concept of DER Constant (Gamman)
125(2)
4.3.5 Primary Standard of Neutron Emission Rate
127(1)
4.4 ICRP Radiation Protection Quantities
128(10)
4.4.1 Concept of Dose Equivalent
128(3)
4.4.1.1 History of Radiobiological Effectiveness
129(2)
4.4.2 Mean Absorbed Dose to Organ
131(3)
4.4.2.1 Radiation Weighting Factor (WR)
132(1)
4.4.2.2 Neutron WR Values
133(1)
4.4.3 Equivalent Dose
134(2)
4.4.3.1 Tissue Dependence of Equivalent Dose
135(1)
4.4.3.2 Reminder Tissues
136(1)
4.4.4 Effective Dose
136(2)
4.5 Internal Exposure and Committed Dose
138(1)
4.6 Reference Phantom for Effective Dose
139(3)
4.6.1 Effective Dose Computation for Reference Person
140(1)
4.6.2 Dose Conversion Coefficient
140(2)
4.7 Monitoring of Occupational Radiation Exposures
142(6)
4.7.1 Defining Phantoms for Operational Quantities in Area Monitoring
143(1)
4.7.2 Characterizing Radiation in Terms of Penetration
143(1)
4.7.3 Operational Quantities for Area Monitoring
143(3)
4.7.3.1 Definition of Ambient Dose Equivalent
144(1)
4.7.3.2 Directional Dose Equivalent for Skin and Eye Lens
145(1)
4.7.4 Operational Quantities for Personal Monitoring (or Individual Monitoring)
146(4)
4.7.4.1 Definition and Concept of Personal Dose Equivalent
147(1)
4.8 Relations between ADE and Physical Dosimetric Quantities
148(2)
4.9 Relations between Personal Dose Equivalent and Physical Dosimetric Quantities
150(4)
4.9.1 Energy Dependence of the Air Kerma to H*(d) Conversion Factors for Photons
152(1)
4.9.2 Energy Dependence of the Fluence to H*(d) Conversion Factors for Neutrons
152(2)
4.9.3 Energy Dependence of the Air Kerma to Hp(d) Conversion Factors
154(1)
References
154(1)
Review Questions
155(2)
5 System of Radiation Protection and Regulations in Radiation Oncology 157(42)
5.1 Introduction
157(2)
5.2 Natural and Man-Made Sources of Radiation Exposure
159(4)
5.2.1 Natural Background Radiation Exposure
159(1)
5.2.2 Cosmic, Terrestrial, and Internal Radiation Exposures
159(2)
5.2.3 Radiation Exposure from Man-Made Sources
161(2)
5.3 ICRP System of Radiation Protection
163(12)
5.3.1 Classification of Exposure Situations
164(2)
5.3.2 Categories of Radiation Exposure
166(3)
5.3.3 Principles of Radiation Protection
169(8)
5.3.3.1 Justification
169(1)
5.3.3.2 Optimization
169(1)
5.3.3.3 Dose Limitation
170(2)
5.3.3.4 Dose Constraints/Reference Levels
172(1)
5.3.3.5 Dose Constraints for Occupational and Public Exposure in a Planned Exposure Situation
173(1)
5.3.3.6 Reference Level for Emergency and Existing Exposure Situation
174(1)
5.4 Establishment of Regulatory Body
175(2)
5.5 Some Basic Regulations and Responsibilities in Radiation Oncology
177(20)
5.5.1 Consenting Process for Exercising Control
177(1)
5.5.2 Responsibility for Enforcing Regulations
178(1)
5.5.3 RSO Responsibilities
178(1)
5.5.4 Area Designation
179(1)
5.5.5 Posting of Areas
180(1)
5.5.6 Personal Protective Devices
180(2)
5.5.7 Regulatory Requirements for Starting and Running a Radiation Oncology Facility
182(4)
5.5.7.1 Employment of Qualified Personnel
182(1)
5.5.7.2 Installation of Type-Approved Equipment or NOC for a New Equipment
183(1)
5.5.7.3 Layout Approval
183(1)
5.5.7.4 Radiation Protection Monitoring and Clinical Dosimetry
184(1)
5.5.7.5 Associated Equipment and Accessories
185(1)
5.5.7.6 Equipment Installation
185(1)
5.5.7.7 Acceptance Testing
185(1)
5.5.7.8 Commissioning Approval
185(1)
5.6.7.9 License for Operation
185(1)
5.5.7.10 Public Safety
185(1)
5.5.7.11 Post Licensing
186(1)
5.5.7.12 Decommissioning
186(1)
5.5.8 Basic Regulations in Optimizing Medical and Occupational Exposures
186(14)
5.5.8.1 Staff Education and Training
186(1)
5.5.8.2 External Beam Therapy Equipment (Teletherapy, Linac Therapy, and Brachytherapy) Performance Standards
187(1)
5.5.8.3 External Beam Therapy Equipment Commissioning Calibration, QA, and Maintenance
187(1)
5.5.8.4 Additional Requirements for the Brachytherapy Sources and Applicators
188(1)
5.5.8.5 Quality Assurance
189(1)
5.5.8.6 Maintenance
189(1)
5.5.8.7 Workplace Monitoring
189(1)
5.5.8.8 Occupational Exposure and Personal Monitoring
190(1)
5.5.8.9 Safety of the Public
191(1)
5.5.8.10 Posting Signs in the Treatment Rooms
191(1)
5.5.8.11 Procurement of Brachytherapy Sources
192(1)
5.5.8.12 Source Storage and Inventory
192(1)
5.5.8.13 Source Preparation (121 or 192Ir Wires) and Handling
192(1)
5.5.8.14 Brachytherapy Treatment
193(1)
5.5.8.15 Emergency Response
193(1)
5.5.8.16 Safety Relating to the Release of a Brachytherapy Patient
194(1)
5.6.8.17 Handling the Death of a Brachytherapy Patient
195(1)
5.5.8.18 Safety of Brachytherapy Sources
195(1)
5.5.8.19 Security of Sources
195(1)
5.5.8.20 Transport of Brachytherapy Sources
196(1)
5.5.8.21 Treatment Planning System
196(1)
5.5.8.22 Treatment Delivery
196(1)
References
197(1)
Review Questions
197(2)
6 Calibration of Radiation Monitoring Instruments 199(20)
6.1 Introduction
199(1)
6.2 Principles of Protection Calibrations
200(13)
6.2.1 Calibration of Workplace Monitors (Survey Meters)
201(11)
6.2.1.1 Characterization of Photon Reference Fields in Terms of Air Kerma or ADE
202(1)
6.2.1.2 Air Kerma and Air Kerma Rate Calibration of Field Instruments
203(2)
6.2.1.3 ADE and ADER Calibration (Photons)
205(1)
6.2.1.4 Monitor Sensitivity (or Response)
206(1)
6.2.1.5 Characterization of Neutron Reference Fields in Terms of Neutron Fluence or ADE
207(3)
6.2.1.6 ADE and ADER Calibration (Neutrons)
210(2)
6.2.2 Calibration of Personal Monitors
212(1)
6.3 Accuracies Required in Monitoring
213(1)
6.4 The Importance of Calibration
214(2)
References
216(1)
Review Questions
217(2)
7 Radiation Detectors for Area (Ambient) Monitoring 219(44)
7.1 Introduction
219(1)
7.2 Detector-Operation Regions in GFDs
220(18)
7.2.1 Recombination Region
221(1)
7.2.2 Ionization Region
221(4)
7.2.2.1 Ion Chamber Detector-Based Survey Meters
225(1)
7.2.3 Proportional Region
225(6)
7.2.3.1 Neutron Detectors Operating in the Proportional Region
228(2)
7.2.3.2 Proportional Detector-Based Neutron Survey Meters
230(1)
7.2.4 Region of Limited Proportionality
231(1)
7.2.5 Geiger-Muller Region
231(6)
7.2.5.1 Detector Quenching Gas
232(1)
7.2.5.2 GM Detector-Based Survey Meters
233(2)
7.2.5.3 Saturation and Energy Dependence of GM Detectors
235(1)
7.2.5.4 Wall-Mounted Area Monitors
236(1)
7.2.6 Continuous Discharge Region
237(1)
7.3 Pulse Mode Operation of GFD
238(7)
7.3.1 Pulse Formation and Pulse Shaping
239(1)
7.3.2 Basic Principles of Pulse Counting Systems
240(5)
7.3.2.1 Characteristic Curve of the Pulse Counting Systems
244(1)
7.4 Solid-State Detectors
245(6)
7.4.1 Intrinsic and Extrinsic Semiconductors
246(13)
7.4.1.1 P-N Junction Diode
247(1)
7.4.1.2 Si P-N Junction Diode in Reverse Bias As a Radiation Detector
248(3)
7.4.1.3 PIN Diode in Reverse Bias As a Radiation Detector
251(1)
7.5 Scintillation-Based Radiation Detectors
251(4)
7.6 Neutron Detectors-Based on Semiconductors and Scintillators
255(2)
7.7 Main Features of a Survey Meter
257(2)
7.8 General Procedures for Radiation Survey
259(2)
7.8.1 Pre-Survey Checks
260(1)
7.8.2 Basic Survey Procedures
261(1)
7.8.3 Maintenance
261(1)
References
261(1)
Review Questions
261(2)
8 Radiation Detectors for Individual Monitoring 263(32)
8.1 Introduction
263(2)
8.2 Principles of Personal Monitoring Film
265(3)
8.2.1 Latent Image Formation
265(1)
8.2.2 Film Processing
265(2)
8.2.3 Film Reading
267(1)
8.3 Personal Monitoring Film Badge Construction
268(2)
8.4 Neutron Monitoring
270(4)
8.4.1 Film Dosimetry for Neutron Monitoring
270(1)
8.4.2 Solid State Nuclear Track Detector for Neutron Monitoring
270(2)
8.4.3 Bubble Detectors for Neutron Personal Monitoring
272(2)
8.5 Modern Personal Monitoring Dosimeters
274(7)
8.5.1 TLD Dosimetry
275(4)
8.5.1.1 Thermoluminescence Emission Phenomenon
275(2)
8.5.1.2 Principle of a TLD Reader
277(1)
8.5.1.3 TLD Badge Design
277(2)
8.5.2 Other Popular Personal Monitoring TLDs
279(1)
8.5.3 TLD Albedo Neutron Monitors
280(1)
8.5.4 Monitoring Extremities for Hp(0.07)
280(1)
8.6 Optically Stimulated Luminescence Systems
281(1)
8.7 Radiophotoluminescent Glass Dosimetry Systems
282(1)
8.8 Direct Reading Personal Monitors
283(3)
8.8.1 Self-Reading Pocket Dosimeter
284(1)
8.8.2 Electronic Personal Dosimeters
285(1)
8.9 Properties of Personal Monitors
286(4)
8.9.1 . Sensitivity and Linearity
286(1)
8.9.2 Energy Dependence
286(3)
8.9.2.1 Energy Dependence of PMFs
287(1)
8.9.2.2 Energy Dependence of TLDs
288(1)
8.9.2.3 Energy Dependence of RPLD and OSLD
288(1)
8.9.2.4 Energy Dependence of Neutron Monitors
288(1)
8.9.3 PDE Range
289(1)
8.9.4 Directional Dependence
290(1)
8.9.5 Discrimination between Different Types of Radiation
290(1)
8.9.6 Uncertainties in Personal Monitoring Measurements
290(1)
8.10 Personal Monitoring Regulations and Recommendations
290(2)
8.10.1 Personal Radiation Monitoring Services
290(1)
8.10.2 Eligibility for Monitoring
290(1)
8.10.3 Frequency of Monitoring
291(1)
8.10.4 Badge-Wearing Position
291(1)
8.10.5 Monitoring a Pregnant Radiation Worker
291(1)
8.10.6 Control Badge
291(1)
8.10.7 Badge Rotation
292(1)
8.10.8 Responsibility for Monitoring a Radiation Facility
292(1)
8.10.9 Proper Use of Monitoring Badges
292(1)
8.11 Dose Records Issues and Maintenance
292(1)
References
293(1)
Review Questions
293(2)
9 Transport of Radioactive Materials in Radiation Oncology 295(12)
9.1 Introduction
295(1)
9.2 Transport Regulations
295(1)
9.3 Classification of Packages
296(1)
9.4 Classification of Radioactive Materials
297(1)
9.5 Classification of Package Types
297(2)
9.6 Classification of Package Categories
299(2)
9.7 Labeling Radioactive Packages and Placarding Transport Carriers
301(1)
9.8 Carrier Responsibilities
302(1)
9.9 Providing Transport Documents
303(1)
9.10 Transport of RAM
303(2)
9.10.1 Transport Under Exclusive Use
303(1)
9.10.2 Prerequisites for Ordering a Radioactive Source by a Radiation Oncology Department
304(1)
9.10.3 Transport of RAMs by the Source Supplier
304(1)
9.10.4 Source Transport Documents
304(1)
9.10.5 Source Certifications
304(1)
9.10.6 Transporting RAMs by the Institution
305(1)
References
305(1)
Review Questions
305(2)
10 Radiation Protection in External Beam Therapy 307(68)
10.1 Introduction
307(1)
10.2 Safety in Treatment Delivery Equipment Design
308(3)
10.2.1 Safety in Equipment Leakage
309(2)
10.3 General Concepts in Radiation Hazard Control
311(2)
10.4 General Aspects of Treatment Delivery Room Planning
313(2)
10.5 Shielding Concepts in Radiation Oncology
315(6)
10.5.1 Primary Radiation and Primary Walls
316(1)
10.5.2 Secondary Radiation and Secondary Walls
317(1)
10.5.3 Other Radiations of Interest
318(1)
10.5.4 Designation of Areas around a Radiation Room
318(1)
10.5.5 Design Parameters
318(7)
10.5.5.1 Use Factor U
318(1)
10.5.5.2 Occupancy Factor T
319(1)
10.5.5.3 Primary Workload
319(1)
10.5.5.4 Leakage Workload
320(1)
10.6 Concept of HVL and TVL
321(2)
10.7 Shielding Materials and Shielding Effectiveness
323(1)
10.8 Permitted Dose and Design Value Dose
324(1)
10.9 Calculation Principles
325(10)
10.9.1 Reduction Factor
325(1)
10.9.2 Shielding for Primary Radiation
326(1)
10.9.3 Shielding for Leakage Radiation
327(1)
10.9.4 Shielding for Scatter Radiation
327(1)
10.9.5 Shielding for Secondary Radiation
328(1)
10.9.6 Obliquity Factor
329(1)
10.9.7 Instantaneous Dose Rate and Time-Averaged Dose Rate
329(6)
10.10 Workload Enhancement in Advanced Treatment Techniques
335(1)
10.11 Shielding Concepts for Tomotherapy
336(4)
10.12 Shielding Concepts for Stereotactic Radiotherapy with Cyber Knife
340(1)
10.13 Shielding Concepts for Gamma Knife
341(2)
10.14 Workload Estimation for Advanced Techniques
343(1)
10.15 Shielding of a Simulator Room
343(2)
10.16 Reduction Factor for the Primary and Secondary Bathers
345(1)
10.17 Shielding of a CT Simulator Room
346(1)
10.18 Technical Aspects of Treatment Delivery Room Design
347(15)
10.18.1 Design of Primary Walls
348(3)
10.18.2 Secondary Radiation Down the Maze and the Dose Near the Maze Entry Door
351(1)
10.18.3 X-Ray Dose at the Maze Entry
351(2)
10.18.4 Neutron and Capture Gamma Dose at Maze Entry
353(4)
10.18.4.1 Production of Gamma Rays
353(1)
10.18.4.2 Neutron Fluences in the Linac Room
353(2)
10.18.4.3 Neutron Dose Determination from Fluence
355(1)
10.18.4.4 Neutron Dose at Maze Entry
355(2)
10.18.4.5 Capture Gamma Dose at Maze Entry
357(1)
10.18.5 Total DE at Maze Entry
357(5)
10.19 Design of the Door
362(2)
10.20 Door Interlocks and Emergency OFF Provisions
364(1)
10.21 Patient Safety
364(1)
10.22 Public Safety
365(1)
10.23 Staff Safety
365(1)
10.24 Linac Equipment Leakage Survey
365(1)
10.25 Installation Survey
366(4)
10.26 Patient Observation and Communication
370(1)
10.27 Warning Signs
370(1)
10.28 Ventilation
370(1)
References
371(1)
Review Questions
372(3)
11 Radiation Protection in Brachytherapy 375(36)
11.1 Introduction
375(1)
11.2 Treatment Dose Rates
375(1)
11.3 Development of Afterloading Techniques
376(4)
11.4 Temporary and Permanent Implants
380(1)
11.5 Source Characteristics
381(1)
11.6 Source Output Specification
382(1)
11.7 Radiation Protection in LDR Brachytherapy
382(5)
11.7.1 Removable Implant LDR Brachytherapy
383(1)
11.7.2 Permanent Implant in LDR Brachytherapy
384(1)
11.7.3 Source Log
384(1)
11.7.4 Source Preparation
384(1)
11.7.5 Source Transportation
385(1)
11.7.6 Source Leak Tests
386(1)
11.7.7 Activity Distribution in the Source
386(1)
11.7.8 Prevention of Radioactive Contamination
386(1)
11.7.9 Source Replacement
387(1)
11.7.10 Security of Radioactive Sources
387(1)
11.8 Principles of Radiation Hazards Control
387(7)
11.8.1 Time
388(1)
11.8.2 Distance
388(1)
11.8.3 Shielding
388(1)
11.8.4 Patient Discharge Criterion (for Permanent Implant Patients)
389(2)
11.8.5 General Instructions for the Discharged Patients
391(1)
11.8.6 Considerations for Postmortem/Funeral of Permanent Implant Patients
391(1)
11.8.7 Nursing of Brachytherapy Patients
392(2)
11.9 Safety Features of Remote Afterloading Devices
394(1)
11.10 Shielding Calculations for Remote Afterloading Brachytherapy Room
395(2)
11.10.1 Workload Estimate
396(1)
11.10.2 Evaluation of Reduction Factors
396(1)
11.11 HDR 192Ir Shielding Calculations
397(2)
11.12 LDR 137Cs Shielding Calculations
399(1)
11.13 HDR 60Co Shielding Calculations
400(1)
11.14 HDR 60Co Maze Scatter Calculations
400(1)
11.15 Safety Features of the RAL Treatment Room
401(2)
11.16 Emergency Situations and Handling of Emergency Situations
403(1)
11.17 Handling an Emergency When the Source Is Stuck
404(1)
11.17.1 Emergency OFF
404(1)
11.17.2 Manual Source Retraction
404(1)
11.17.3 Disconnecting the Applicator from the Machine
404(1)
11.18 Radiation Surveys
405(3)
11.18.1 HDR Equipment Leakage Survey
406(1)
11.18.2 Source Storage Container Survey
406(1)
11.18.3 Patient Survey
406(1)
11.18.4 Ambient Survey (with Wall-Mounted Area Monitor)
407(1)
11.19 Brachytherapy Suite
408(1)
References
409(1)
Review Questions
409(2)
12 Prevention of Accidents in Radiation Oncology 411(10)
12.1 Introduction
411(1)
12.2 Some Accidents in External Beam Therapy
412(1)
12.2.1 Beam Calibration Very Much Off
412(1)
12.2.2 Accelerator Software Problems
413(1)
12.2.3 Incorrect Accelerator Repair and Communication Problems (Spain, 1990)
413(1)
12.2.4 Power Failure Leading to an Accident (Poland, 2001)
413(1)
12.3 Some Accidents in Treatment Planning
413(1)
12.3.1 Incomplete Understanding and Testing of a TPS (UK, 1982-1990)
413(1)
12.3.2 Untested Change of Procedure for Data Entry into TPS (Panama, 2000)
414(1)
12.4 Some Accidents in Brachytherapy
414(2)
12.4.1 Malfunction of High-Dose-Rate Brachytherapy Equipment (USA, 1992)
414(1)
12.4.2 Treatment of Wrong Site
415(1)
12.5 Clinical Consequences of Radiation Accidents
416(1)
12.6 Prevention of Accidents in Radiation Oncology
417(1)
12.7 Security of Radioactive Sources
418(1)
References
419(1)
Review Questions
419(2)
Index 421
Dr Govinda Rajan K N is a Professor at the PSG Hospitals, Coimbatore. He is an IAEA Expert on Medical Dosimetry, Medical radiation safety and Dosimetry Calibrations. His areas of specialization are Medical Radiation Dosimetry, Medical Radiation Safety, Radiation Oncology Physics, Dosimetric Standards, Calibrations, Regulatory matters relating to Medical Radiation safety and Quality Assurance in Hospitals