Atnaujinkite slapukų nuostatas

El. knyga: Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology

(CRM Consulting Services, West Kelowna, British Columbia, Canada), (The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, UK)
  • Formatas: 190 pages
  • Išleidimo metai: 21-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040219669
Kitos knygos pagal šią temą:
  • Formatas: 190 pages
  • Išleidimo metai: 21-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040219669
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Understand Quantitative Radiobiology from a Radiation Biophysics Perspective

In the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing.Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.

Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer Treatments

The book compiles radiation mechanism information from biophysical publications of the past 50 years, addressing how ionizing radiation produces the killing of stem cells in human tumors. It presents several physical and chemical parameters that can modulate the radiation response of clonogenic cells in tumors. The authors describe the use of the LQ model in basic radiation mechanism studies with cells of relatively homogeneous radiation response and then extend the model to the fitting of survival data generated with heterogeneous cell populations (tumors). They briefly discuss how to use the LQ model for predicting tumor (local) control probability (TCP) and normal tissue complication probability (NTCP). The book also examines potential molecular targets related to alpha- and beta-inactivation and gives suggestions for further molecular characterizations of these two independent processes.

Develop Efficacious, Patient-Friendly Treatments at Reduced Costs

Focusing on quantitative radiobiology in LQ formulation, this book assists medical physicists and radiation oncologists in identifying improved cancer treatments. It also encourages investigators to translate potentially improved radiotherapy schedules based on TCP and NTCP modeling into actual patient benefit.

Recenzijos

"I found the book fairly easy to read and it is not bogged down too much by complex biological jargon, which will be a relief to most medical physicists. You get the sense that through their course and books, they [ the authors] are really trying to give something back to the radiotherapy community." Scope, September 2015

"This book competently reviews the background science of the linear-quadratic (LQ) model with a clear mandate of applicability to clinical radiation oncology. These respected researchers and exceptional authors form the ideal team to implement radiobiological optimization." Jerry J. Battista, PhD, Professor and Chair, Department of Medical Biophysics, Western University, London, Ontario, Canada

" synthesizes this complex field for contemporary practitioners in a highly useful and readable way." Matthew B. Parliament, MD, Medical Director, Cross Cancer Institute, Alberta, Canada

Preface ix
Acknowledgments xiii
About the Authors xv
List of Abbreviations
xvii
1 Introduction
1(8)
2 The Generation of Quantitative Radiobiology Data
9(10)
3 Intrinsic Radiosensitivity of Proliferating and Quiescent Cells
19(12)
4 Effects of Ionization Density and Volume
31(18)
4.1 Ionizations along Charged-Particle Tracks
32(8)
4.2 The ABCs of Charged-Particle Radiotherapy
40(3)
4.3 The Frequency of Electron Track-Ends in Radiation Dose
43(6)
5 Impact of Fraction Size, Dose-Rate, Temperature and Overall Treatment Time on Tumor Cell Response
49(10)
6 Ionizing Events, Molecular Targets and Lethal Lesions
59(26)
6.1 Time-Scale of Radiation-Induced Cellular Damages and Their Expression
60(3)
6.2 The Oxygen Effect and Oxygen Enhancement Ratio (OER)
63(3)
6.3 Radiation Events---The Role of Energy Density and Ionization Volume
66(7)
6.4 The Molecular Target(s) for Cell Inactivation
73(7)
6.5 Lesions Produced in Cellular DNA by Radiation
80(5)
7 The Radiosensitivity of Tumor Cells In Vitro versus In Vivo
85(10)
7.1 The Radiosensitivity of Cells Irradiated in Multicellular Spheroids
86(1)
7.2 The Radiosensitivity of Rodent Tumor Cells
87(2)
7.3 Appropriate Inactivation Parameters for Modeling Human Tumor Response
89(6)
8 Modern Radiobiology and the LQ Equation
95(8)
8.1 Molecular Biology Factors of a- and b-Inactivation
96(2)
8.2 Low Dose Hypersensitivity (LDH)
98(1)
8.3 Bystander Effects
99(4)
9 Normal Tissue Radiobiology
103(24)
9.1 Information Derived from In Vitro Studies of Normal Tissue Cell Lines
104(1)
9.2 Therapeutic Ratio
105(1)
9.3 Fractionation
106(6)
9.4 Functional Subunits (FSUs) and the Volume Effect
112(4)
9.5 A Summary of the QUANTEC Study
116(11)
10 Radiobiology Applied to Tumor Response Modeling
127(10)
10.1 Surviving Fractions after Fractionated Dose Delivery
128(1)
10.2 An LQ-Based TCP Model
129(1)
10.3 Population Averaging
130(3)
10.4 Incorporating Tumor Biology
133(2)
10.5 Future Perspectives
135(2)
Epilogue 137(4)
References 141(20)
Index 161
J. Donald Chapman provides consulting services to various radiation medicine commercial and academic organizations. His research has contributed to the fields of hypoxic radiosensitizing drugs, nuclear medicine markers of viable hypoxic cells, mechanisms of photodynamic therapy, and the killing of tumor cells by ionizing radiations. He has authored and co-authored over 200 articles in scientific journals and conference proceedings, served on the editorial boards of numerous radiation research journals, and received several international research awards. He earned a PhD in biophysics from the Pennsylvania State University.

Alan E. Nahum is head of physics research at Clatterbridge Cancer Centre and a visiting professor in the Department of Physics at Liverpool University. His current research focuses on radiobiologically guided treatment optimization through the individualization of tumor prescription and fractionation. He has edited and co-edited three books, including Handbook of Radiotherapy Physics: Theory and Practice, and authored and co-authored approximately 170 peer-reviewed papers, book chapters, and conference proceedings. He earned a PhD in theoretical radiation dosimetry from the University of Edinburgh.