|
|
1 | (30) |
|
1.1 The Euler-MacLaurin Summation Formula |
|
|
3 | (6) |
|
1.2 Ramanujan's Constant of a Series |
|
|
9 | (1) |
|
1.3 A Difference Equation |
|
|
9 | (6) |
|
1.3.1 The Functions φf and Rf |
|
|
10 | (5) |
|
1.3.2 The Fundamental Theorem |
|
|
15 | (1) |
|
|
15 | (16) |
|
1.4.1 Definition and Examples |
|
|
23 | (4) |
|
|
27 | (4) |
|
1.4.3 Relation to Usual Summation |
|
|
31 | (1) |
|
2 Properties of the Ramanujan Summation |
|
|
31 | (30) |
|
2.1 Some Elementary Properties |
|
|
31 | (10) |
|
2.1.1 The Unusual Property of the Shift |
|
|
31 | (6) |
|
|
37 | (1) |
|
|
38 | (3) |
|
2.2 Summation and Derivation |
|
|
41 | (4) |
|
2.3 The Case of an Entire Function |
|
|
45 | (10) |
|
2.3.1 The Sum of an Entire Function |
|
|
45 | (6) |
|
2.3.2 An Expression of Catalan's Constant |
|
|
51 | (1) |
|
2.3.3 Some Trigonometric Series |
|
|
52 | (3) |
|
2.4 Functional Relations for Fractional Sums |
|
|
55 | (6) |
|
3 Dependence on a Parameter |
|
|
61 | (52) |
|
3.1 Analyticity with Respect to a Parameter |
|
|
61 | (22) |
|
3.1.1 The Theorem of Analyticity |
|
|
61 | (9) |
|
3.1.2 Analytic Continuation of Dirichlet Series |
|
|
70 | (2) |
|
3.1.3 The Zeta Function of the Laplacian on S2 |
|
|
72 | (3) |
|
|
75 | (4) |
|
3.1.5 A Modified Zeta Function |
|
|
79 | (1) |
|
3.1.6 The Sums ΣRn≤1 Nkφf(n) |
|
|
80 | (3) |
|
3.2 Integration with Respect to a Parameter |
|
|
83 | (12) |
|
3.2.1 Interchanging ΣRn≤1 Nkφf1 |
|
|
83 | (2) |
|
3.2.2 The Functional Equation for Zeta |
|
|
85 | (1) |
|
3.2.3 The Case of a Laplace Transform |
|
|
86 | (5) |
|
3.2.4 Series Involving Zeta Values |
|
|
91 | (4) |
|
|
95 | (18) |
|
3.3.1 Definitions and Properties |
|
|
95 | (5) |
|
3.3.2 Some Formulas for the Stieltjes Constant γ1 |
|
|
100 | (6) |
|
3.3.3 A Simple Proof of a Formula of Ramanujan |
|
|
106 | (3) |
|
3.3.4 The Functional Relation for Eisenstein Function G2 |
|
|
109 | (4) |
|
4 Transformation Formulas |
|
|
113 | (44) |
|
4.1 A Borel Summable Series |
|
|
113 | (7) |
|
|
113 | (2) |
|
|
115 | (2) |
|
4.1.3 Borel Summability of Euler-MacLaurin Series |
|
|
117 | (3) |
|
4.2 A Convergent Expansion |
|
|
120 | (15) |
|
4.2.1 Bernoulli Numbers of Second Kind |
|
|
120 | (1) |
|
4.2.2 Newton Interpolation Formula |
|
|
121 | (2) |
|
4.2.3 Evaluation of Δnf(1) |
|
|
123 | (5) |
|
4.2.4 The Convergent Transformation Formula |
|
|
128 | (7) |
|
4.3 Summation of Alternating Series |
|
|
135 | (22) |
|
4.3.1 Euler Summation of Alternating Series |
|
|
135 | (6) |
|
4.3.2 Properties of the Summation |
|
|
141 | (3) |
|
4.3.3 Relation with the Ramanujan Summation |
|
|
144 | (7) |
|
|
151 | (6) |
|
5 An Algebraic View on the Summation of Series |
|
|
157 | (18) |
|
|
157 | (2) |
|
5.2 An Algebraic Formalism |
|
|
159 | (4) |
|
5.3 Properties of the General Summation |
|
|
163 | (6) |
|
5.3.1 The Linearity Property |
|
|
163 | (1) |
|
|
164 | (1) |
|
5.3.3 The Associated Algebraic Limit |
|
|
165 | (2) |
|
|
167 | (2) |
|
|
169 | (6) |
|
A Euler-MacLaurin and Euler-Boole Formulas |
|
|
175 | (6) |
|
|
175 | (2) |
|
A.2 The Euler-MacLaurin Formula |
|
|
177 | (1) |
|
A.3 The Euler-Boole Formula |
|
|
178 | (3) |
|
B Ramanujan's Interpolation Formula and Carlson's Theorem |
|
|
181 | (10) |
Bibliography |
|
191 | (2) |
Index |
|
193 | |