Atnaujinkite slapukų nuostatas

Ramsey Theory on the Integers [Minkštas viršelis]

  • Formatas: Paperback / softback, weight: 394 g, Illustrations
  • Serija: Student Mathematical Library
  • Išleidimo metai: 01-Sep-2004
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821831992
  • ISBN-13: 9780821831991
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, weight: 394 g, Illustrations
  • Serija: Student Mathematical Library
  • Išleidimo metai: 01-Sep-2004
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821831992
  • ISBN-13: 9780821831991
Kitos knygos pagal šią temą:
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics.""Ramsey Theory on the Integers"" offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.
List of Tables xi
Preface xiii
Chapter
1. Preliminaries
1(20)
§1.1. The Pigeonhole Principle
3(2)
§1.2. Ramsey's Theorem
5(4)
§1.3. Some Notation
9(2)
§1.4. Three Classical Theorems
11(3)
§1.5. A Little More Notation
14(2)
§1.6. Exercises
16(3)
§1.7. Research Problems
19(1)
§1.8. References
20(1)
Chapter
2. Van der Waerden's Theorem
21(34)
§2.1. The Compactness Principle
25(2)
§2.2. Alternate Forms of van der Waerden's Theorem
27(2)
§2.3. Computing van der Waerden Numbers
29(6)
§2.4. Bounds on van der Waerden Numbers
35(6)
§2.5. The Erdos and Turan Function
41(2)
§2.6. Proof of van der Waerden's Theorem
43(6)
§2.7. Exercises
49(2)
§2.8. Research Problems
51(1)
§2.9. References
52(3)
Chapter
3. Supersets of AP
55(48)
§3.1. Quasi-progressions
56(10)
§3.2. Generalized Quasi-progressions
66(4)
§3.3. Descending Waves
70(2)
§3.4. Semi-progressions
72(9)
§3.5. Iterated Polynomials
81(10)
§3.6. Arithmetic Progressions as Recurrence Solutions
91(2)
§3.7. Exercises
93(3)
§3.8. Research Problems
96(4)
§3.9. References
100(3)
Chapter
4. Subsets of AP
103(32)
§4.1. Finite Gap Sets
105(6)
§4.2. Infinite Gap Sets
111(18)
§4.3. Exercises
129(2)
§4.4. Research Problems
131(2)
§4.5. References
133(2)
Chapter
5. Other Generalizations of w(k; r)
135(28)
§5.1. Sequences of Type x, ax + d, bx + 2d
135(12)
§5.2. Homothetic Copies of Sequences
147(5)
§5.3. Sequences of Type x, x + d, x + 2d + b
152(6)
§5.4. Exercises
158(1)
§5.5. Research Problems
159(1)
§5.6. References
160(3)
Chapter
6. Arithmetic Progressions (mod m)
163(18)
§6.1. The Family of Arithmetic Progressions (modm)
164(3)
§6.2. A Seemingly Smaller Family Is More Regular
167(6)
§6.3. The Degree of Regularity
173(3)
§6.4. Exercises
176(2)
§6.5. Research Problems
178(2)
§6.6. References
180(1)
Chapter
7. Other Variations on van der Waerden's Theorem
181(18)
§7.1. The Function Γ,m(k)
181(4)
§7.2. Monochromatic Sets a(S + b)
185(2)
§7.3. Having Most Elements Monochromatic
187(4)
§7.4. Permutations Avoiding Arithmetic Progressions
191(4)
§7.5. Exercises
195(1)
§7.6. Research Problems
196(1)
§7.7. References
197(2)
Chapter
8. Schur's Theorem
199(26)
§8.1. The Basic Theorem
200(11)
§8.2. A Generalization of Schur's Theorem
211(5)
§8.3. Refinements of Schur's Theorem
216(3)
§8.4. Exercises
219(2)
§8.5. Research Problems
221(1)
§8.6. References
222(3)
Chapter
9. Rado's Theorem
225(36)
§9.1. Rado's Single Equation Theorem
225(14)
§9.2. Some Rado Numbers
239(10)
§9.3. Generalizations of the Single Equation Theorem
249(6)
§9.4. Exercises
255(2)
§9.5. Research Problems
257(1)
§9.6. References
258(3)
Chapter
10. Other Topics
261(32)
§10.1. Folkman's Theorem
261(4)
§10.2. Doublefree Sets
265(1)
§10.3. Diffsequences
266(10)
§10.4. Brown's Lemma
276(3)
§10.5. Patterns in Colorings
279(2)
§10.6. Zero-sums
281(7)
§10.7. Exercises
288(1)
§10.8. Research Problems
289(2)
§10.9. References
291(2)
Notation 293(4)
Bibliography 297(18)
Index 315