Biographies |
|
xiii | |
List of Contributors |
|
xv | |
Preface |
|
xix | |
1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye-Sensitized Solar Cells |
|
1 | (14) |
|
|
Kandasamy Jothivenkatachalam |
|
|
|
|
|
1 | (2) |
|
1.2 Metal Dressed ZnO Nanostructures as Photoanodes |
|
|
3 | (8) |
|
1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes |
|
|
4 | (2) |
|
1.2.2 Metal Dressed ZnO Nanorods as Photoanodes |
|
|
6 | (2) |
|
1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes |
|
|
8 | (1) |
|
1.2.4 Metal Dressed ZnO Nanowires as Photoanodes |
|
|
8 | (2) |
|
1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes |
|
|
10 | (1) |
|
1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs |
|
|
10 | (1) |
|
1.3 Conclusions and Outlook |
|
|
11 | (2) |
|
|
13 | (2) |
2 Cosensitization Strategies for Dye-Sensitized Solar Cells |
|
15 | (46) |
|
|
|
|
|
15 | (3) |
|
|
18 | (33) |
|
2.2.1 Cosensitization of Metal Complexes with Organic Dyes |
|
|
19 | (22) |
|
2.2.1.1 Phthalocyanine-based Metal Complexes |
|
|
19 | (2) |
|
2.2.1.2 Porphyrin-based Metal Complexes |
|
|
21 | (6) |
|
2.2.1.3 Ruthenium-based Metal Complexes |
|
|
27 | (14) |
|
2.2.2 Cosensitization of Organic-Organic Dyes |
|
|
41 | (10) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (9) |
3 Natural Dye-Sensitized Solar Cells-Strategies and Measures |
|
61 | (24) |
|
|
|
|
|
61 | (2) |
|
3.1.1 Mechanism of the Dye-Sensitized Solar Cell Compared with the Z-scheme of Photosynthesis |
|
|
62 | (1) |
|
3.2 Components of Dye-sensitized Solar Cell |
|
|
63 | (2) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
3.3 Fabrication of Natural DSSCs |
|
|
65 | (3) |
|
3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method |
|
|
65 | (1) |
|
3.3.2 Characterization of the Photoelectrode for DSSCs |
|
|
66 | (1) |
|
3.3.3 Preparation of Natural Dye |
|
|
67 | (1) |
|
|
68 | (1) |
|
3.3.5 Arrangement of the DSSC |
|
|
68 | (1) |
|
3.4 Efficiency and Stability Enhancement in Natural Dye-Sensitized Solar Cells |
|
|
68 | (11) |
|
3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes |
|
|
69 | (1) |
|
3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes |
|
|
70 | (1) |
|
3.4.2 Citric Acid-Best Solvent for Extracting Anthocyanins |
|
|
70 | (2) |
|
3.4.3 Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs |
|
|
72 | (3) |
|
3.4.3.1 Preparation of Buffer Layers-Sodium Alginate and Spirulina |
|
|
73 | (2) |
|
3.4.4 Sodium-doped Nanorods for Enhancing the Natural DSSC Performance |
|
|
75 | (2) |
|
3.4.4.1 Preparing Sodium-doped Nanorods as the Photoelectrode |
|
|
75 | (2) |
|
3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage |
|
|
77 | (2) |
|
3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes |
|
|
79 | (3) |
|
|
82 | (1) |
|
|
82 | (3) |
4 Advantages of Polymer Electrolytes for Dye-Sensitized Solar Cells |
|
85 | (36) |
|
|
|
|
85 | (1) |
|
4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs) |
|
|
86 | (1) |
|
4.3 Gel Polymer Electrolytes (GPEs) |
|
|
87 | (23) |
|
4.3.1 Chitosan (Ch) and Blends |
|
|
88 | (3) |
|
4.3.2 Phthaloylchitosan (PhCh) and Blends |
|
|
91 | (7) |
|
4.3.3 Poly(Vinyl Alcohol) (PVA) |
|
|
98 | (7) |
|
4.3.4 Polyacrylonitrile (PAN) |
|
|
105 | (4) |
|
4.3.5 Polyvinylidene Fluoride (PVdF) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (10) |
5 Advantages of Polymer Electrolytes Towards Dye-sensitized Solar Cells |
|
121 | (48) |
|
|
|
|
|
|
121 | (6) |
|
|
121 | (3) |
|
5.1.1.1 Generation of Solar Cells |
|
|
122 | (2) |
|
5.1.2 Types of Electrolyte Used in Third Generation Solar Cells |
|
|
124 | (3) |
|
5.1.2.1 Liquid Electrolytes (LEs) |
|
|
124 | (1) |
|
5.1.2.2 Room Temperature Ionic Liquids (RTILs) |
|
|
125 | (1) |
|
5.1.2.3 Solid State Hole Transport Materials (SS-HTMs) |
|
|
126 | (1) |
|
|
127 | (3) |
|
5.2.1 Mechanism of Ion Transport in Polymer Electrolytes |
|
|
128 | (1) |
|
5.2.2 Types of Polymer Electrolyte |
|
|
129 | (1) |
|
5.2.2.1 Solid Polymer Electrolytes |
|
|
129 | (1) |
|
5.2.2.2 Gel Polymer Electrolytes |
|
|
129 | (1) |
|
5.2.2.3 Composite Polymer Electrolyte |
|
|
130 | (1) |
|
5.3 Dye-sensitized Solar Cells |
|
|
130 | (20) |
|
5.3.1 Components and Operational Principle |
|
|
131 | (9) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (2) |
|
5.3.1.4 Redox Electrolyte |
|
|
137 | (3) |
|
5.3.1.5 Counter Electrode |
|
|
140 | (1) |
|
5.3.2 Application of Polymer Electrolytes in DSSCs |
|
|
140 | (8) |
|
5.3.2.1 Solid-state Dye-Sensitized Solar Cells (SS-DSSCs) |
|
|
140 | (2) |
|
5.3.2.2 Quasi-solid-state Dye-Sensitized Solar Cells (QS-DSSC) |
|
|
142 | (2) |
|
5.3.2.3 Types of Additives in GPEs |
|
|
144 | (4) |
|
|
148 | (2) |
|
5.4 Quantum Dot Sensitized Solar Cells (QDSSC) |
|
|
150 | (2) |
|
5.5 Perovskite-Sensitized Solar Cells (PSSC) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (15) |
6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion |
|
169 | (24) |
|
|
|
169 | (2) |
|
6.2 Principles of Next Generation Solar Cells |
|
|
171 | (4) |
|
6.2.1 Dye-sensitized Solar Cells |
|
|
171 | (2) |
|
6.2.2 Principles of Quantum Dot Sensitized Solar Cells |
|
|
173 | (1) |
|
6.2.3 Principles of Perovskite Solar Cells |
|
|
174 | (1) |
|
6.3 Platinum-free Counterelectrode Materials |
|
|
175 | (10) |
|
6.3.1 Carbon-based Materials for Solar Energy Conversion |
|
|
175 | (3) |
|
6.3.2 Metal Nitride and Carbide Materials |
|
|
178 | (1) |
|
6.3.3 Metal Sulfide Materials |
|
|
179 | (3) |
|
6.3.4 Composite Materials |
|
|
182 | (1) |
|
6.3.5 Metal Oxide Materials |
|
|
183 | (1) |
|
6.3.6 Polymer Counterelectrodes |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (7) |
7 Design and Fabrication of Carbon-based Nanostructured Counter Electrode Materials for Dye-sensitized Solar Cells |
|
193 | (28) |
|
|
|
|
7.1 Photovoltaic Solar Cells-An Overview |
|
|
193 | (2) |
|
7.1.1 First Generation Solar Cells |
|
|
194 | (1) |
|
7.1.2 Second Generation Solar Cells |
|
|
194 | (1) |
|
7.1.3 Third Generation Solar Cells |
|
|
194 | (1) |
|
7.1.4 Fourth Generation Solar Cells |
|
|
195 | (1) |
|
7.2 Dye-sensitized Solar Cells |
|
|
195 | (6) |
|
7.2.1 Major Components of DSSCs |
|
|
196 | (4) |
|
7.2.1.1 Transparent Conducting Glass Substrate |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
7.2.1.4 Redox Electrolytes |
|
|
199 | (1) |
|
|
200 | (1) |
|
7.2.2 Working Mechanism of DSSCs |
|
|
200 | (1) |
|
7.3 Carbon-based Nanostructured CE Materials for DSSCs |
|
|
201 | (15) |
|
|
216 | (1) |
|
|
217 | (4) |
8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers |
|
221 | (34) |
|
|
Ananthanarayanan Krishnamoorthy |
|
|
|
221 | (1) |
|
8.2 Research Areas in Organic Solar Cells |
|
|
222 | (2) |
|
8.3 An Overview of Inverted Organic Solar Cells |
|
|
224 | (8) |
|
8.3.1 Transport Layers in Inverted Organic Solar Cells |
|
|
227 | (1) |
|
8.3.2 PEDOT:PSS Hole Transport Layer |
|
|
227 | (2) |
|
8.3.3 Titanium Oxide Electron Transport Layer |
|
|
229 | (3) |
|
8.4 Issues in Inverted Organic Solar Cells and Respective Solutions |
|
|
232 | (3) |
|
8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells |
|
|
233 | (1) |
|
8.4.2 Light-soaking Issue of TiOx-based Inverted Organic Solar Cells |
|
|
234 | (1) |
|
8.5 Overcoming the Wettability Issue and Light-soaking Issue in Inverted Organic Solar Cells |
|
|
235 | (10) |
|
8.5.1 Fluorosurfactant-modified PEDOT:PSS as Hole Transport Layer |
|
|
235 | (4) |
|
8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer |
|
|
239 | (6) |
|
8.6 Conclusions and Outlook |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
246 | (9) |
9 Fabrication of Metal Top Electrode via Solution-based Printing Technique for Efficient Inverted Organic Solar Cells |
|
255 | (28) |
|
|
|
|
|
|
|
|
|
255 | (2) |
|
9.2 Organic Photovoltaic Cells |
|
|
257 | (1) |
|
|
258 | (2) |
|
|
260 | (3) |
|
9.4.1 Single Layer or Monolayer Device |
|
|
260 | (1) |
|
9.4.2 Planar Heterojunction Device |
|
|
261 | (1) |
|
9.4.3 Bulk Heterojunction Device |
|
|
261 | (1) |
|
9.4.4 Ordered Bulk Heterojunction Device |
|
|
261 | (1) |
|
9.4.5 Inverted Organic Solar Cells |
|
|
262 | (1) |
|
|
263 | (4) |
|
9.5.1 Hybrid-EHDA Technique |
|
|
263 | (4) |
|
|
265 | (1) |
|
9.5.1.2 Applied Potential |
|
|
265 | (1) |
|
9.5.1.3 Pneumatic Pressure |
|
|
265 | (1) |
|
9.5.1.4 Stand-off Distance |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (1) |
|
9.5.2 Mode of Atomization |
|
|
267 | (1) |
|
|
267 | (1) |
|
9.5.2.2 Unstable Spray Mode |
|
|
267 | (1) |
|
9.5.2.3 Stable Spray Mode |
|
|
267 | (1) |
|
9.6 Fabrication of Inverted Organic Solar Cells |
|
|
267 | (5) |
|
9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate |
|
|
268 | (1) |
|
9.6.2 Deposition of P3HT:PCBM |
|
|
268 | (1) |
|
9.6.3 Deposition of PEDOT:PSS |
|
|
268 | (1) |
|
9.6.4 Deposition of Silver as a Top Electrode |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
273 | (4) |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
277 | (6) |
10 Polymer Solar Cells-An Energy Technology for the Future |
|
283 | (24) |
|
|
|
|
283 | (1) |
|
10.2 Materials Developments for Bulk Heterojunction Solar Cells |
|
|
284 | (7) |
|
10.2.1 Conjugated Polymer-Fullerene Solar Cells |
|
|
284 | (5) |
|
10.2.2 Non-Fullerene Polymer Solar Cells |
|
|
289 | (1) |
|
10.2.3 All-Polymer Solar Cells |
|
|
290 | (1) |
|
10.3 Materials Developments for Molecular Heterojunction Solar Cells |
|
|
291 | (2) |
|
10.3.1 Double-cable Polymers |
|
|
291 | (2) |
|
10.4 Developments in Device Structures |
|
|
293 | (7) |
|
10.4.1 Tandem Solar Cells |
|
|
295 | (2) |
|
10.4.2 Inverted Polymer Solar Cells |
|
|
297 | (3) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (6) |
11 Rational Strategies for Large-area Perovskite Solar Cells: Laboratory Scale to Industrial Technology |
|
307 | (32) |
|
|
|
|
307 | (1) |
|
|
308 | (1) |
|
11.3 Perovskite Solar Cells |
|
|
309 | (4) |
|
|
310 | (3) |
|
|
310 | (3) |
|
|
313 | (1) |
|
|
313 | (3) |
|
11.4.1 Solvent Engineering |
|
|
313 | (1) |
|
11.4.2 Compositional Engineering |
|
|
314 | (1) |
|
11.4.3 Interfacial Engineering |
|
|
314 | (2) |
|
11.5 Enhancing the Stability of Devices |
|
|
316 | (13) |
|
11.5.1 Deposition Techniques |
|
|
317 | (24) |
|
|
317 | (2) |
|
|
319 | (1) |
|
11.5.1.3 Slot Die Coating |
|
|
320 | (1) |
|
|
321 | (3) |
|
|
324 | (1) |
|
11.5.1.6 Laser Patterning |
|
|
324 | (1) |
|
11.5.1.7 Roll-to-Roll Deposition |
|
|
325 | (1) |
|
11.5.1.8 Other Large Area Deposition Techniques |
|
|
326 | (3) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
329 | (10) |
12 Hot Electrons Role in Blomolecule-based Quantum Dot Hybrid Solar Cells |
|
339 | (30) |
|
|
|
|
|
|
|
339 | (2) |
|
12.2 Classifications of Solar Cells |
|
|
341 | (3) |
|
12.2.1 Inorganic Solar Cells |
|
|
342 | (1) |
|
12.2.2 Organic Solar Cells (OSCs) |
|
|
343 | (1) |
|
12.2.3 Hybrid Solar Cells |
|
|
344 | (1) |
|
12.3 Main Losses in Solar Cells |
|
|
344 | (2) |
|
12.3.1 Recombination Loss |
|
|
345 | (1) |
|
|
345 | (1) |
|
12.4 Hot Electron Concept in Materials |
|
|
346 | (1) |
|
|
347 | (3) |
|
12.5.1 Hot Injection Method |
|
|
348 | (2) |
|
12.5.1.1 Nucleation and Growth Stages |
|
|
349 | (1) |
|
12.5.1.2 Merits of this Method |
|
|
350 | (1) |
|
|
350 | (1) |
|
12.6.1 CdSe QD Preparation |
|
|
350 | (1) |
|
12.6.2 QD-βC Hybrid Formation |
|
|
351 | (1) |
|
12.7 Identification of Hot Electrons |
|
|
351 | (9) |
|
12.7.1 Photoluminescence (PL) Spectrum |
|
|
351 | (4) |
|
12.7.2 Time-correlated Single Photon Counting (TCSPC) |
|
|
355 | (2) |
|
12.7.3 Transient Absorption |
|
|
357 | (3) |
|
12.8 Quantum Dot Sensitized Solar Cells |
|
|
360 | (3) |
|
|
360 | (1) |
|
12.8.2 Device Preparation |
|
|
361 | (1) |
|
12.8.2.1 Preparation of TiO2 Nanoparticle Electrode |
|
|
361 | (1) |
|
12.8.2.2 QDs Deposition on TiO2 Nanoparticle |
|
|
362 | (1) |
|
12.8.2.3 Counterelectrode and Assembly of QDSSC |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
363 | (6) |
Index |
|
369 | |