Atnaujinkite slapukų nuostatas

Rational Design of Solar Cells for Efficient Solar Energy Conversion [Kietas viršelis]

  • Formatas: Hardback, 400 pages, aukštis x plotis x storis: 231x158x28 mm, weight: 748 g
  • Išleidimo metai: 30-Nov-2018
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119437407
  • ISBN-13: 9781119437406
  • Formatas: Hardback, 400 pages, aukštis x plotis x storis: 231x158x28 mm, weight: 748 g
  • Išleidimo metai: 30-Nov-2018
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119437407
  • ISBN-13: 9781119437406

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy

Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells.

The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion.  This important resource: 

  • Offers a comprehensive review of recent developments in solar cell technology
  • Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells
  • Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application.
  • Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists

Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Biographies xiii
List of Contributors xv
Preface xix
1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye-Sensitized Solar Cells 1(14)
Gregory Thien Soon How
Kandasamy Jothivenkatachalam
Alagarsamy Pandikumar
Nay Ming Huang
1.1 Introduction
1(2)
1.2 Metal Dressed ZnO Nanostructures as Photoanodes
3(8)
1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes
4(2)
1.2.2 Metal Dressed ZnO Nanorods as Photoanodes
6(2)
1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes
8(1)
1.2.4 Metal Dressed ZnO Nanowires as Photoanodes
8(2)
1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes
10(1)
1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs
10(1)
1.3 Conclusions and Outlook
11(2)
References
13(2)
2 Cosensitization Strategies for Dye-Sensitized Solar Cells 15(46)
Gachumale Saritha
Sambandam Anandan
Muthupandian Ashokkumar
2.1 Introduction
15(3)
2.2 Cosensitization
18(33)
2.2.1 Cosensitization of Metal Complexes with Organic Dyes
19(22)
2.2.1.1 Phthalocyanine-based Metal Complexes
19(2)
2.2.1.2 Porphyrin-based Metal Complexes
21(6)
2.2.1.3 Ruthenium-based Metal Complexes
27(14)
2.2.2 Cosensitization of Organic-Organic Dyes
41(10)
2.3 Conclusions
51(1)
Acknowledgements
51(1)
References
52(9)
3 Natural Dye-Sensitized Solar Cells-Strategies and Measures 61(24)
N. Prabavathy
R. Balasundaraprabhu
Dhayalan Velauthapillai
3.1 Introduction
61(2)
3.1.1 Mechanism of the Dye-Sensitized Solar Cell Compared with the Z-scheme of Photosynthesis
62(1)
3.2 Components of Dye-sensitized Solar Cell
63(2)
3.2.1 Photoelectrode
63(1)
3.2.2 Dye
64(1)
3.2.3 Liquid Electrolyte
64(1)
3.2.4 Counterelectrode
65(1)
3.3 Fabrication of Natural DSSCs
65(3)
3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method
65(1)
3.3.2 Characterization of the Photoelectrode for DSSCs
66(1)
3.3.3 Preparation of Natural Dye
67(1)
3.3.4 Sensitization
68(1)
3.3.5 Arrangement of the DSSC
68(1)
3.4 Efficiency and Stability Enhancement in Natural Dye-Sensitized Solar Cells
68(11)
3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes
69(1)
3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes
70(1)
3.4.2 Citric Acid-Best Solvent for Extracting Anthocyanins
70(2)
3.4.3 Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs
72(3)
3.4.3.1 Preparation of Buffer Layers-Sodium Alginate and Spirulina
73(2)
3.4.4 Sodium-doped Nanorods for Enhancing the Natural DSSC Performance
75(2)
3.4.4.1 Preparing Sodium-doped Nanorods as the Photoelectrode
75(2)
3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage
77(2)
3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes
79(3)
3.6 Conclusions
82(1)
References
82(3)
4 Advantages of Polymer Electrolytes for Dye-Sensitized Solar Cells 85(36)
L.P. Teo
A.K. Arof
4.1 Why Solar Cells?
85(1)
4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs)
86(1)
4.3 Gel Polymer Electrolytes (GPEs)
87(23)
4.3.1 Chitosan (Ch) and Blends
88(3)
4.3.2 Phthaloylchitosan (PhCh) and Blends
91(7)
4.3.3 Poly(Vinyl Alcohol) (PVA)
98(7)
4.3.4 Polyacrylonitrile (PAN)
105(4)
4.3.5 Polyvinylidene Fluoride (PVdF)
109(1)
4.4 Summary and Outlook
110(1)
Acknowledgements
111(1)
References
111(10)
5 Advantages of Polymer Electrolytes Towards Dye-sensitized Solar Cells 121(48)
Nagaraj Pavithra
Giovanni Landi
Andrea Sorrentino
Sambandam Anandan
5.1 Introduction
121(6)
5.1.1 Energy Demand
121(3)
5.1.1.1 Generation of Solar Cells
122(2)
5.1.2 Types of Electrolyte Used in Third Generation Solar Cells
124(3)
5.1.2.1 Liquid Electrolytes (LEs)
124(1)
5.1.2.2 Room Temperature Ionic Liquids (RTILs)
125(1)
5.1.2.3 Solid State Hole Transport Materials (SS-HTMs)
126(1)
5.2 Polymer Electrolytes
127(3)
5.2.1 Mechanism of Ion Transport in Polymer Electrolytes
128(1)
5.2.2 Types of Polymer Electrolyte
129(1)
5.2.2.1 Solid Polymer Electrolytes
129(1)
5.2.2.2 Gel Polymer Electrolytes
129(1)
5.2.2.3 Composite Polymer Electrolyte
130(1)
5.3 Dye-sensitized Solar Cells
130(20)
5.3.1 Components and Operational Principle
131(9)
5.3.1.1 Substrate
133(1)
5.3.1.2 Photoelectrode
134(1)
5.3.1.3 Photosensitizer
135(2)
5.3.1.4 Redox Electrolyte
137(3)
5.3.1.5 Counter Electrode
140(1)
5.3.2 Application of Polymer Electrolytes in DSSCs
140(8)
5.3.2.1 Solid-state Dye-Sensitized Solar Cells (SS-DSSCs)
140(2)
5.3.2.2 Quasi-solid-state Dye-Sensitized Solar Cells (QS-DSSC)
142(2)
5.3.2.3 Types of Additives in GPEs
144(4)
5.3.3 Bifacial DSSCs
148(2)
5.4 Quantum Dot Sensitized Solar Cells (QDSSC)
150(2)
5.5 Perovskite-Sensitized Solar Cells (PSSC)
152(1)
5.6 Conclusion
153(1)
Acknowledgements
154(1)
References
154(15)
6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion 169(24)
Prabhakarn Arunachalam
6.1 Introduction
169(2)
6.2 Principles of Next Generation Solar Cells
171(4)
6.2.1 Dye-sensitized Solar Cells
171(2)
6.2.2 Principles of Quantum Dot Sensitized Solar Cells
173(1)
6.2.3 Principles of Perovskite Solar Cells
174(1)
6.3 Platinum-free Counterelectrode Materials
175(10)
6.3.1 Carbon-based Materials for Solar Energy Conversion
175(3)
6.3.2 Metal Nitride and Carbide Materials
178(1)
6.3.3 Metal Sulfide Materials
179(3)
6.3.4 Composite Materials
182(1)
6.3.5 Metal Oxide Materials
183(1)
6.3.6 Polymer Counterelectrodes
184(1)
6.4 Summary and Outlook
185(1)
References
186(7)
7 Design and Fabrication of Carbon-based Nanostructured Counter Electrode Materials for Dye-sensitized Solar Cells 193(28)
Jayaraman Theerthagiri
Raja Arumugam Senthil
Jagannathan Madhavan
7.1 Photovoltaic Solar Cells-An Overview
193(2)
7.1.1 First Generation Solar Cells
194(1)
7.1.2 Second Generation Solar Cells
194(1)
7.1.3 Third Generation Solar Cells
194(1)
7.1.4 Fourth Generation Solar Cells
195(1)
7.2 Dye-sensitized Solar Cells
195(6)
7.2.1 Major Components of DSSCs
196(4)
7.2.1.1 Transparent Conducting Glass Substrate
197(1)
7.2.1.2 Photoelectrode
197(1)
7.2.1.3 Dye Sensitizer
198(1)
7.2.1.4 Redox Electrolytes
199(1)
7.2.1.5 Counterelectrode
200(1)
7.2.2 Working Mechanism of DSSCs
200(1)
7.3 Carbon-based Nanostructured CE Materials for DSSCs
201(15)
7.4 Conclusions
216(1)
References
217(4)
8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers 221(34)
Fang Jeng Lim
Ananthanarayanan Krishnamoorthy
8.1 Introduction
221(1)
8.2 Research Areas in Organic Solar Cells
222(2)
8.3 An Overview of Inverted Organic Solar Cells
224(8)
8.3.1 Transport Layers in Inverted Organic Solar Cells
227(1)
8.3.2 PEDOT:PSS Hole Transport Layer
227(2)
8.3.3 Titanium Oxide Electron Transport Layer
229(3)
8.4 Issues in Inverted Organic Solar Cells and Respective Solutions
232(3)
8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells
233(1)
8.4.2 Light-soaking Issue of TiOx-based Inverted Organic Solar Cells
234(1)
8.5 Overcoming the Wettability Issue and Light-soaking Issue in Inverted Organic Solar Cells
235(10)
8.5.1 Fluorosurfactant-modified PEDOT:PSS as Hole Transport Layer
235(4)
8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer
239(6)
8.6 Conclusions and Outlook
245(1)
Acknowledgements
246(1)
References
246(9)
9 Fabrication of Metal Top Electrode via Solution-based Printing Technique for Efficient Inverted Organic Solar Cells 255(28)
Navaneethan Duraisamy
Kavitha Kandiah
Kyung-Hyun Choi
Dhanaraj Gopi
Ramesh Rajendran
Pazhanivel Thangavelu
Maadeswaran Palanisamy
9.1 Introduction
255(2)
9.2 Organic Photovoltaic Cells
257(1)
9.3 Working Principle
258(2)
9.4 Device Architecture
260(3)
9.4.1 Single Layer or Monolayer Device
260(1)
9.4.2 Planar Heterojunction Device
261(1)
9.4.3 Bulk Heterojunction Device
261(1)
9.4.4 Ordered Bulk Heterojunction Device
261(1)
9.4.5 Inverted Organic Solar Cells
262(1)
9.5 Fabrication Process
263(4)
9.5.1 Hybrid-EHDA Technique
263(4)
9.5.1.1 Flow Rate
265(1)
9.5.1.2 Applied Potential
265(1)
9.5.1.3 Pneumatic Pressure
265(1)
9.5.1.4 Stand-off Distance
265(1)
9.5.1.5 Nozzle Diameter
266(1)
9.5.1.6 Ink Properties
266(1)
9.5.2 Mode of Atomization
267(1)
9.5.2.1 Dripping Mode
267(1)
9.5.2.2 Unstable Spray Mode
267(1)
9.5.2.3 Stable Spray Mode
267(1)
9.6 Fabrication of Inverted Organic Solar Cells
267(5)
9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate
268(1)
9.6.2 Deposition of P3HT:PCBM
268(1)
9.6.3 Deposition of PEDOT:PSS
268(1)
9.6.4 Deposition of Silver as a Top Electrode
269(3)
9.7 Device Morphology
272(1)
9.8 Device Performance
273(4)
9.9 Conclusion
277(1)
Acknowledgements
277(1)
References
277(6)
10 Polymer Solar Cells-An Energy Technology for the Future 283(24)
Alagar Ramar
Fu-Ming Wang
10.1 Introduction
283(1)
10.2 Materials Developments for Bulk Heterojunction Solar Cells
284(7)
10.2.1 Conjugated Polymer-Fullerene Solar Cells
284(5)
10.2.2 Non-Fullerene Polymer Solar Cells
289(1)
10.2.3 All-Polymer Solar Cells
290(1)
10.3 Materials Developments for Molecular Heterojunction Solar Cells
291(2)
10.3.1 Double-cable Polymers
291(2)
10.4 Developments in Device Structures
293(7)
10.4.1 Tandem Solar Cells
295(2)
10.4.2 Inverted Polymer Solar Cells
297(3)
10.5 Conclusions
300(1)
Acknowledgements
300(1)
References
301(6)
11 Rational Strategies for Large-area Perovskite Solar Cells: Laboratory Scale to Industrial Technology 307(32)
Arunachalam Arulraj
Mohan Ramesh
11.1 Introduction
307(1)
11.2 Perovskite
308(1)
11.3 Perovskite Solar Cells
309(4)
11.3.1 Architecture
310(3)
11.3.1.1 Mesoporous PSCs
310(3)
11.3.1.2 Planar PSCs
313(1)
11.4 Device Processing
313(3)
11.4.1 Solvent Engineering
313(1)
11.4.2 Compositional Engineering
314(1)
11.4.3 Interfacial Engineering
314(2)
11.5 Enhancing the Stability of Devices
316(13)
11.5.1 Deposition Techniques
317(24)
11.5.1.1 Spin Coating
317(2)
11.5.1.2 Blade Coating
319(1)
11.5.1.3 Slot Die Coating
320(1)
11.5.1.4 Screen Printing
321(3)
11.5.1.5 Spray Coating
324(1)
11.5.1.6 Laser Patterning
324(1)
11.5.1.7 Roll-to-Roll Deposition
325(1)
11.5.1.8 Other Large Area Deposition Techniques
326(3)
11.6 Summary
329(1)
Acknowledgement
329(1)
References
329(10)
12 Hot Electrons Role in Blomolecule-based Quantum Dot Hybrid Solar Cells 339(30)
T. Pazhanivel
G. Bharathi
D. Nataraj
R. Ramesh
D. Navaneethan
12.1 Introduction
339(2)
12.2 Classifications of Solar Cells
341(3)
12.2.1 Inorganic Solar Cells
342(1)
12.2.2 Organic Solar Cells (OSCs)
343(1)
12.2.3 Hybrid Solar Cells
344(1)
12.3 Main Losses in Solar Cells
344(2)
12.3.1 Recombination Loss
345(1)
12.3.2 Contact Losses
345(1)
12.4 Hot Electron Concept in Materials
346(1)
12.5 Methodology
347(3)
12.5.1 Hot Injection Method
348(2)
12.5.1.1 Nucleation and Growth Stages
349(1)
12.5.1.2 Merits of this Method
350(1)
12.6 Material Synthesis
350(1)
12.6.1 CdSe QD Preparation
350(1)
12.6.2 QD-βC Hybrid Formation
351(1)
12.7 Identification of Hot Electrons
351(9)
12.7.1 Photoluminescence (PL) Spectrum
351(4)
12.7.2 Time-correlated Single Photon Counting (TCSPC)
355(2)
12.7.3 Transient Absorption
357(3)
12.8 Quantum Dot Sensitized Solar Cells
360(3)
12.8.1 Working Principle
360(1)
12.8.2 Device Preparation
361(1)
12.8.2.1 Preparation of TiO2 Nanoparticle Electrode
361(1)
12.8.2.2 QDs Deposition on TiO2 Nanoparticle
362(1)
12.8.2.3 Counterelectrode and Assembly of QDSSC
362(1)
12.8.3 Performance
362(1)
12.9 Conclusion
363(1)
References
363(6)
Index 369
Alagarsamy Pandikumar, Ph.D., is a Scientist at the Functional Materials Division, CSIR-Central Electrochemical Research Institute, and leads the Solar Energy Materials Research Group.

Ramasamy Ramaraj, Ph.D., is a CSIR-Emeritus Scientist in the School of Chemistry, at Madurai Kamaraj University, where he continues his research work on photoelectrochemistry.