Atnaujinkite slapukų nuostatas

El. knyga: Rational Homotopy Theory

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 205
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461301059
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 205
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461301059
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

as well as by the list of open problems in the final section of this monograph. The computational power of rational homotopy theory is due to the discovery by Quillen [ 135] and by Sullivan [ 144] of an explicit algebraic formulation. In each case the rational homotopy type of a topological space is the same as the isomorphism class of its algebraic model and the rational homotopy type of a continuous map is the same as the algebraic homotopy class of the correspond­ ing morphism between models. These models make the rational homology and homotopy of a space transparent. They also (in principle, always, and in prac­ tice, sometimes) enable the calculation of other homotopy invariants such as the cup product in cohomology, the Whitehead product in homotopy and rational Lusternik-Schnirelmann category. In its initial phase research in rational homotopy theory focused on the identi­ of these models. These included fication of rational homotopy invariants in terms the homotopy Lie algebra (the translation of the Whitehead product to the homo­ topy groups of the loop space OX under the isomorphism 11'+1 (X) ~ 1I.(OX», LS category and cone length. Since then, however, work has concentrated on the properties of these in­ variants, and has uncovered some truly remarkable, and previously unsuspected phenomena. For example If X is an n-dimensional simply connected finite CW complex, then either its rational homotopy groups vanish in degrees 2': 2n, or else they grow exponentially.

Recenzijos

From the reviews:



MATHEMATICAL REVIEWS



"In 535 pages, the authors give a complete and thorough development of rational homotopy theory as well as a review (of virtually) all relevant notions of from basic homotopy theory and homological algebra. This is a truly remarkable achievement, for the subject comes in many guises."



 



Y. Felix, S. Halperin, and J.-C. Thomas



Rational Homotopy Theory



"A complete and thorough development of rational homotopy theory as well as a review of (virtually) all relevant notions from basic homotopy theory and homological algebra. This is truly a magnificent achievement . . . a true appreciation for the goals and techniques of rational homotopy theory, as well as an effective toolkit for explicit computation of examples throughout algebraic topology."



AMERICAN MATHEMATICAL SOCIETY

Daugiau informacijos

Springer Book Archives
I Homotopy Theory, Resolutions for Fibrations, and P- local Spaces.- 0
Topological spaces.- 1 CW complexes, homotopy groups and cofibrations.- 2
Fibrations and topological monoids.- 3 Graded (differential) algebra.- 4
Singular chains, homology and Eilenberg-MacLane spaces.- 5 The cochain
algebra C*(X;$$\Bbbk $$.- 6 (R, d) modules and semifree resolutions.- 7
Semifree cochain models of a fibration.- 8 Semifree chain models of a
Gfibration.- 9 P local and rational spaces.- II Sullivan Models.- 10
Commutative cochain algebras for spaces and simplicial sets.- 11 Smooth
Differential Forms.- 12 Sullivan models.- 13 Adjunction spaces, homotopy
groups and Whitehead products.- 14 Relative Sullivan algebras.- 15
Fibrations, homotopy groups and Lie group actions.- 16 The loop space
homology algebra.- 17 Spatial realization.- III Graded Differential Algebra
(continued).- 18 Spectral sequences.- 19 The bar and cobar constructions.- 20
Projective resolutions of graded modules.- IV Lie Models.- 21 Graded
(differential) Lie algebras and Hopf algebras.- 22 The Quillen functors C*
and C.- 23 The commutative cochain algebra, C*(L,dL).- 24 Lie models for
topological spaces and CW complexes.- 25 Chain Lie algebras and topological
groups.- 26 The dg Hopf algebra C*(?X.- V Rational Lusternik Schnirelmann
Category.- 27 Lusternik-Schnirelmann category.- 28 Rational LS category and
rational cone-length.- 29 LS category of Sullivan algebras.- 30 Rational LS
category of products and flbrations.- 31 The homotopy Lie algebra and the
holonomy representation.- VI The Rational Dichotomy: Elliptic and Hyperbolic
Spaces and Other Applications.- 32 Elliptic spaces.- 33 Growth of Rational
Homotopy Groups.- 34 The Hochschild-Serre spectral sequence.- 35 Grade and
depth for fibres and loop spaces.- 36Lie algebras of finite depth.- 37 Cell
Attachments.- 38 Poincaré Duality.- 39 Seventeen Open Problems.- References.