Atnaujinkite slapukų nuostatas

El. knyga: Rational Sphere Maps

  • Formatas: EPUB+DRM
  • Serija: Progress in Mathematics 341
  • Išleidimo metai: 12-Jul-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030758097
  • Formatas: EPUB+DRM
  • Serija: Progress in Mathematics 341
  • Išleidimo metai: 12-Jul-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030758097

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics.  Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples.  Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps.  The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps.  Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problemswill encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry.  Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the authors research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html

Recenzijos

This monographs endeavors to provide analogous interesting features relevant to this subject. In particular, it explores the recent developments in the theory of rational sphere maps between complex spheres. It also establishes well the interrelation of this theory in several other relevant fields and its wide area of application. This monograph pays notable attention to computational aspects of the theory. The examples provided in each chapter explain well the theory from this constructive point of view." (Masoud Sabzevari, zbMATH 1485.32001, 2022)

Many exercises are interspersed throughout the book to keep the reader interested and give a nice break to simply reading through. They are well worth thinking about. The book should be a good fit for a beginning graduate student who has finished their comprehensive or qualifying exams and is looking for a problem to study. It is also a good read for an expert in a related field searching for new problems to study. (Jiķ Lebl, Mathematical Reviews, May, 2022)

1 Complex Euclidean Space
1(24)
1 Generalities
1(5)
2 The Groups Aut(B1), SU(2), and SU(I, 1)
6(4)
3 Automorphisms of the Unit Ball
10(5)
4 Hermitian Forms
15(4)
5 Proper Mappings
19(3)
6 Some Counting
22(2)
7 A GPS for This Book
24(1)
2 Examples and Properties of Rational Sphere Maps
25(48)
1 Definition and Basic Results about Rational Sphere Maps
25(6)
2 Sphere-Ranks and Target-Ranks
31(2)
3 Ranks of Products
33(4)
4 Juxtaposition
37(1)
5 The Tensor Product Operation
38(2)
6 The Restricted Tensor Product Operation
40(4)
7 An Abundance of Rational Sphere Maps
44(3)
8 Some Results in Low Codimension
47(3)
9 A Result in Sufficiently High Codimension
50(3)
10 Homotopy and Target-Rank
53(1)
11 Remarks on Degree Bounds
54(1)
12 Inverse Image of a Point
55(2)
13 The General Rational Sphere Map
57(10)
14 A Detailed Rational Example
67(3)
15 An Example in Source Dimension 3
70(3)
3 Monomial Sphere Maps
73(38)
1 Properties of Monomial Sphere Maps
74(3)
2 Some Remarkable Monomial Sphere Maps
77(6)
3 More on These Remarkable Polynomials
83(1)
4 Cyclic Groups and Monomial Sphere Maps
84(7)
5 Circulant Matrices
91(3)
6 The Pell Equation
94(3)
7 Elaboration of the Method for Producing Sharp Polynomials
97(5)
8 Additional Tricks
102(1)
9 Maps with Source Dimension 2 and Target Dimension 4
103(3)
10 Target-Ranks for Monomial Sphere Maps
106(5)
4 Monomial Sphere Maps and Linear Programming
111(42)
1 Underdetermined Linear Systems
112(1)
2 An Optimization Problem for Monomial Sphere Maps
113(3)
3 Two Detailed Examples in Source Dimension 2
116(3)
4 Results of Coding and Consequences in Source Dimension 2
119(13)
5 Monomial Sphere Maps in Higher Dimension
132(9)
6 Sparseness in Source Dimension 2
141(1)
7 Sparseness in Source Dimension at Least Three
142(3)
8 The Optimal Polynomials in Degrees 9 and 11
145(6)
9 Coding
151(2)
5 Groups Associated with Holomorphic Mappings
153(30)
1 Five Groups
153(3)
2 Examples of the Five Groups
156(2)
3 Hermitian-Invariant Groups for Rational Sphere Maps
158(4)
4 Additional Examples
162(2)
5 Behavior of Γf Under Various Constructions
164(3)
6 Examples Involving the Symmetric Group
167(3)
7 The Symmetric Group
170(2)
8 Groups Arising from Rational Sphere Maps
172(2)
9 Different Representations
174(2)
10 Additional Results
176(3)
11 A Criterion for Being a Polynomial
179(4)
6 Elementary Complex and CR Geometry
183(28)
1 Subvarieties of the Unit Ball
183(2)
2 The Unbounded Realization of the Unit Sphere
185(3)
3 Geometry of Real Hypersurfaces
188(5)
4 CR Functions and Mappings
193(3)
5 Strong Pseudoconvexity of the Unit Sphere
196(2)
6 Comparison with the Real Case
198(2)
7 Varieties Associated with Rational Sphere Maps
200(4)
8 Examples of Xf
204(2)
9 A Return to the Definition of Rational Sphere Map
206(5)
7 Geometric Properties of Rational Sphere Maps
211(14)
1 Volumes
211(3)
2 A Geometric Result in One Dimension
214(2)
3 An Integral Inequality
216(3)
4 Volume Inequalities for Polynomial and Rational Sphere Maps
219(4)
5 Comparison with a Real Variable Integral Inequality
223(2)
8 List of Open Problems
225(2)
Bibliography 227(4)
Index 231
John P. D'Angelo, PhD, is a Professor in the Department of Mathematics at the University of Illiniois at Urbana-Champaign, USA