Atnaujinkite slapukų nuostatas

El. knyga: Recent Advances in Diffeologies and Their Applications

  • Formatas: 258 pages
  • Serija: Contemporary Mathematics 794
  • Išleidimo metai: 30-Apr-2024
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470476076
Kitos knygos pagal šią temą:
  • Formatas: 258 pages
  • Serija: Contemporary Mathematics 794
  • Išleidimo metai: 30-Apr-2024
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470476076
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18-20, 2022, at the Universite de Grenoble-Alpes, Grenoble, France.

The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE.

The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.
N. Goldammer, J.-P. Magnot, and K. Welker, On diffeologies from infinite
dimensional geometry to PDE constrained optimzation
C. Blohmann, Elastic diffeological spaces
A. Ahmadi, A remark on stability and the D-topology of mapping spaces
Y. Karshon and J. Watts, Smooth maps on convex sets
E. Wu, A survey on diffeological vector spaces and applications
E. Pervova, Finite-dimensional diffeological vector spaces being and not
being coproducts
D. Miyamoto, Singular foliations through diffeology
J. Watts and S. Wolbert, Diffeological coarse moduli spaces of stacks over
manifolds
F. Battaglia and E. Prato, Generalized Laurent monomials in nonrational toric
geometry
I. Androulidakis, On a remark by Alan Weinstein
A. Eslami-Rad, J.-P. Magnot, E. G. Reyes, and V. Rubtsov, Diffeologies and
generalized Kadomtsev-Petviashvili hierarchies
N. Iwase, Smooth $A_\infty$-form on a diffeological loop space
H. Kihara, Smooth homotopy of diffeological spaces: Theory and applications
to infinite-dimensional $C^\infty$-manifolds
Jean-Pierre Magnot, Universite d'Angers, France.

Lycee Jeanne d'Arc, Clermont-Ferrand, France.