Atnaujinkite slapukų nuostatas

El. knyga: Recent Progress on the Donaldson-Thomas Theory: Wall-Crossing and Refined Invariants

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is an exposition of recent progress on the Donaldson–Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi–Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov–Witten/Donaldson–Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others. 

Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi–Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar–Vafa invariant, which was first proposed by Gopakumar–Vafa in 1998, but its precise mathematical definition has not been available until recently.

This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.

Recenzijos

The book is directed at readers with a solid foundation in algebraic geometry. the main definitions and theorems are nicely illustrated by examples. The book will serve as a guide to further reading for those wishing to learn more details about the theory. (Matthew B. Young, Mathematical Reviews, March, 2023)

1DonaldsonThomas invariants on CalabiYau 3-folds.- 2Generalized
DonaldsonThomas invariants.- 3DonaldsonThomas invariants for quivers with
super-potentials.- 4DonaldsonThomas invariants for Bridgeland semistable
objects.- 5Wall-crossing formulas of DonaldsonThomas invariants.-
6Cohomological DonaldsonThomas invariants.- 7GopakumarVafa invariants.-
8Some future directions.
The author is currently Professor and Principal investigator at Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo. He was an invited speaker at the ICM 2014.