Atnaujinkite slapukų nuostatas

Rechargeable Lithium Batteries: From Fundamentals to Applications [Kietas viršelis]

Edited by (University of Picardie Jules Verne, France)
  • Formatas: Hardback, 412 pages, aukštis x plotis: 229x152 mm, weight: 740 g
  • Serija: Woodhead Publishing Series in Energy
  • Išleidimo metai: 01-Apr-2015
  • Leidėjas: Woodhead Publishing Ltd
  • ISBN-10: 1782420908
  • ISBN-13: 9781782420903
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 412 pages, aukštis x plotis: 229x152 mm, weight: 740 g
  • Serija: Woodhead Publishing Series in Energy
  • Išleidimo metai: 01-Apr-2015
  • Leidėjas: Woodhead Publishing Ltd
  • ISBN-10: 1782420908
  • ISBN-13: 9781782420903
Kitos knygos pagal šią temą:

Rechargeable Lithium Batteries: From Fundamentals to Application provides an overview of rechargeable lithium batteries, from fundamental materials, though characterization and modeling, to applications. The market share of lithium ion batteries is fast increasing due to their high energy density and low maintenance requirements. Lithium air batteries have the potential for even higher energy densities, a requirement for the development of electric vehicles, and other types of rechargeable lithium battery are also in development.

After an introductory chapter providing an overview of the main scientific and technological challenges posed by rechargeable Li batteries, Part One of this book reviews materials and characterization of rechargeable lithium batteries. Part Two covers performance and applications, discussing essential aspects such as battery management, battery safety and emerging rechargeable lithium battery technologies as well as medical and aerospace applications.

  • Expert overview of the main scientific and technological challenges posed by rechargeable lithium batteries
  • Address the important topics of analysis, characterization, and modeling in rechargeable lithium batteries
  • Key analysis of essential aspects such as battery management, battery safety, and emerging rechargeable lithium battery technologies

Daugiau informacijos

An authoritative overview of rechargeable lithium batteries, from fundamental materials to characterization, modelling, and applications
List of contributors
ix
Woodhead Publishing Series in Energy xiii
Preface xix
1 Rechargeable lithium batteries: key scientific and technological challenges
1(18)
M. Bini
D. Capsoni
S. Ferrari
E. Quartarone
P. Mustarelli
1.1 Introduction
1(2)
1.2 Current market position of rechargeable lithium batteries, chiefly as far as concerns the portable electronics
3(1)
1.3 Major fundamental and technological challenges in the development of rechargeable lithium batteries
4(8)
1.4 Future trends and developments
12(1)
1.5 Sources of further information
13(6)
References
14(5)
Part One Materials and characterization
19(242)
2 Materials for positive electrodes in rechargeable lithium-ion batteries
21(20)
F. Liu
P.P. Mukherjee
2.1 Introduction
21(1)
2.2 Overview of different metal oxide cathode materials
21(6)
2.3 Lithium intercalation mechanism
27(14)
Acknowledgments
37(1)
References
37(4)
3 Catalytic cathode nanomaterials for rechargeable lithium-air batteries: status and challenges
41(32)
H. Cheng
K. Scott
3.1 Introduction
41(1)
3.2 Catalysts for air cathodes
42(16)
3.3 Support materials for air cathodes
58(6)
3.4 Future trends
64(1)
3.5 Sources of further information and advice
65(8)
References
67(6)
4 Electrolytes for rechargeable lithium batteries
73(44)
M. Montanino
S. Passerini
G.B. Appetecchi
4.1 Introduction
73(1)
4.2 Organic liquid electrolytes
73(10)
4.3 Ionic liquid electrolytes
83(7)
4.4 Polymer electrolytes
90(5)
4.5 Solid inorganic electrolytes
95(2)
4.6 Future trends
97(1)
4.7 Sources of further information and advice
98(19)
References
98(16)
Appendix: list of acronyms
114(3)
5 Materials and technologies for rechargeable lithium-sulfur batteries
117(32)
N. Azimi
Z. Xue
S.S. Zhang
Z. Zhang
5.1 Introduction
117(1)
5.2 Fundamental chemistry of lithium-sulfur (Li-S) battery
118(2)
5.3 Problems and challenges
120(1)
5.4 Current advances in the Li-S battery
121(17)
5.5 Conclusions and outlook
138(11)
References
139(10)
6 Electrochemistry of rechargeable lithium-air batteries
149(34)
J. Hou
X. Jie
J. Graetz
M.W. Ellis
R.B. Moore
K. Uosaki
6.1 Introduction
149(2)
6.2 Fundamental electrochemical analysis of the lithium-air (Li-air) battery
151(11)
6.3 Application of model electrode
162(14)
6.4 Future trends
176(7)
References
176(7)
7 Electrochemical characterization of rechargeable lithium batteries
183(50)
C. Villevieille
7.1 Introduction
183(1)
7.2 Advantages and disadvantages of ex situ and in situ/operando techniques
184(1)
7.3 Common in situ cell designs
184(4)
7.4 Bulk characterizations
188(17)
7.5 Surface characterizations
205(12)
7.6 Optical characterizations
217(7)
7.7 Conclusion
224(9)
Acknowledgments
224(1)
References
224(9)
8 Atomistic modeling of the behavior of materials in rechargeable lithium-ion and lithium-air batteries
233(28)
P. Kaghazchi
8.1 Introduction
233(1)
8.2 Method
234(5)
8.3 Si anodes
239(7)
8.4 Initial stage of solid electrolyte interphase (SEI) formation on Si surfaces
246(5)
8.5 Sn anodes
251(4)
8.6 Role of defective graphene in lithium--air (Li--air) battery cathodes
255(1)
8.7 Conclusions and outlook
256(5)
Acknowledgments
257(1)
References
258(3)
Part Two Performance and applications
261(124)
9 Aging and degradation of lithium-ion batteries
263(18)
N. Omar
Y. Firouz
H. Gualous
J. Salminen
T. Kallio
J.M. Timmermans
Th. Coosemans
P. Van den Bossche
J. Van Mierlo
9.1 Introduction
263(1)
9.2 Methodology
264(1)
9.3 Results
265(12)
9.4 Conclusions
277(4)
References
277(4)
10 System-level management of rechargeable lithium-ion batteries
281(22)
A.G. Stefanopoulou
Y. Kim
10.1 Introduction
281(1)
10.2 Battery state estimation
282(7)
10.3 Battery cell equalization
289(2)
10.4 Battery thermal management
291(6)
10.5 Conclusion
297(6)
References
298(5)
11 Environmental performance of lithium batteries: life cycle analysis
303(16)
M. Messagie
L. Oliveira
S. Rangaraju
J.S. Forner
M.H. Rivas
11.1 Introduction
303(1)
11.2 Problem setting: environmental impacts and lithium resource availability
304(1)
11.3 Depletion of metal resources: the case of lithium
305(2)
11.4 Methodology: life cycle assessment of batteries
307(2)
11.5 Results: life cycle impact assessment
309(7)
11.6 Conclusions
316(3)
References
317(1)
Appendix: abbreviations
318(1)
12 Rechargeable lithium batteries for energy storage in smart grids
319(34)
K. Zaghib
A. Mauger
C.M. Julien
12.1 Introduction
319(1)
12.2 Energy storage
320(10)
12.3 Lithium-ion batteries
330(8)
12.4 Supercapacitors
338(1)
12.5 Vehicle-to-grid
339(2)
12.6 Future trends
341(12)
References
344(9)
13 Rechargeable lithium batteries for medical applications
353(16)
M.J. Cleland
13.1 Introduction
353(1)
13.2 Critical care and patient monitoring
353(2)
13.3 Defibrillation
355(2)
13.4 Heart failure
357(1)
13.5 Circulatory assist devices
358(3)
13.6 Biomedical engineering
361(4)
13.7 Summary
365(4)
References
365(4)
14 Rechargeable lithium batteries for aerospace applications
369(16)
W.Q. Walker
14.1 Introduction
369(3)
14.2 Primary aerospace applications
372(7)
14.3 Recent aerospace-related lithium/lithium-ion (Li/Li-ion) battery failures
379(2)
14.4 Future trends
381(1)
14.5 Sources of further information
382(3)
References
382(3)
Index 385