Atnaujinkite slapukų nuostatas

El. knyga: Reflection of Life: Functional Entailment and Imminence in Relational Biology

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A. H. Louies The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was What is life ; the theme of this sequel is How do two life forms interact? Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates function dictates structure, rather than structure implies function. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotles four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolism-repair [ (M,R)-] systems.

 Here in the second volume, these tools are expanded to employ set-valued mappings, adjacency matrices, random graphs, and interacting entailment networks. The theory of set-valued mappings culminates in the imminence mapping, which equips the further  investigation of functional entailment in complex relational networks. Imminence in (M,R)-networks that model living systems addresses the topics of biogenesis and natural selection. Interacting (M,R)-networks with mutually entailing processes serve as  models in the study of symbiosis and pathophysiology. The formalism also provides a natural framework for a relational theory of virology and oncology.

This book will serve researchers and graduate students in mathematics and biology.
Exordium: An Introduction to Relational Biology xvii
Prolegomenon: Cardinalis
1(1)
Sets
1(1)
Equipotence
2(1)
Cardinality
3(2)
Indexed Sets
5(2)
Sequences
7(6)
Part I Pentateuchus: Becoming Mapping
13(96)
1 Mapping Origins
15(14)
In principio: Mappings
15(3)
Mappings of Sets
18(6)
What Is a Mapping?
24(5)
2 From Points to Sets
29(18)
Congregatio: Set-Valued Analysis
29(5)
From Sets to Sets
34(2)
Inverse Mapping
36(1)
Inverse Images
37(4)
Iterated Mappings of Sets
41(4)
Operations on Set-Valued Mappings
45(2)
3 Principles of Set-Valued Mappings
47(26)
Explanatio: Relational Diagram
47(2)
Sequential Composition
49(3)
Category of Relations
52(2)
Equivalence Relations
54(4)
Monoids
58(2)
Closures
60(7)
Partial Orders
67(1)
Graphs
68(5)
4 Censusing Independence
73(14)
Mitto: Isolation and Independence
73(3)
Nuances of Independence
76(3)
Counting Independent Sets
79(8)
5 Set-Valued Mappings Redux
87(22)
Si postquam: Binary Matrices
87(1)
Adjacency Matrices of Mappings
88(2)
Adjacency Matrices of Set-Valued Mappings
90(2)
Matrix Operations
92(5)
Relations on X
97(2)
Graphic Illustrations
99(7)
Ellipses
106(3)
Part II Functional Entailment
109(54)
6 The Logic of Entailment
111(14)
Truth and Consequences
111(2)
Causality and Inference
113(2)
Category Theory of Sequential Composition
115(6)
Category Theory of Hierarchical Composition
121(4)
7 The Imminence Mapping
125(16)
Clef Systems and (M,R)-Systems
125(4)
(M,R)-Networks
129(4)
Entailment in RC
133(2)
Imminent Consequences
135(6)
8 Imminence of Life
141(12)
Genesis of Functional Entailment
141(1)
Further Graph Theory
142(1)
Random Graphs
143(5)
Spiritus vitae
148(5)
9 Imminence in Models
153(10)
Imminence Mapping of a System
153(3)
Imminence in (M,R)-Networks
156(1)
Iterated Imminence
157(6)
Part III Interacting (M,R)-Networks
163(72)
10 Connections
165(16)
Relational Interactions
165(4)
Entailment Between Systems
169(7)
Multiple Connections and Unfolding
176(5)
11 Symbiosis
181(14)
Natural Philosophy of Symbiosis
181(2)
Relational Symbiosis
183(4)
Symbiosis of (M,R)-Systems
187(3)
Infection
190(5)
12 Pathophysiology
195(16)
From Symbiosis to Pathophysiology
195(2)
Entailment of Metabolism
197(5)
Entailment of Repair and Replication
202(3)
Natural Selection
205(2)
Origins
207(4)
13 Relational Virology
211(12)
Pathogeny
211(2)
Virus Components
213(5)
Infection Modes
218(5)
14 Therapeutics
223(12)
Relational Therapeutics
223(3)
Categorical Therapeutics
226(3)
Pathogenetic Strategies and Carcinogenesis
229(4)
Parousia: A Final Reflection
233(2)
Acknowledgments 235(2)
Bibliography 237(2)
Index 239
Dr. Aloisius H. Louie is a mathematical biologist. His 1981 PhD thesis topic was on the abstract formulation of categorical system theory in biology. Robert Rosen, then Killam Professor of Biomathematics at Dalhousie University (Halifax, Nova Scotia, Canada), was his mentor. His other degrees are BSc (1978, Honours Mathematics and Biology) and MA (1979, Pure Mathematics) from the University of Western Ontario (London, Ontario, Canada). Dr. Louie's research subjects have encompassed abstract formulations, mathematical modelling, and computer simulations of various natural and physical phenomena, including dynamic behaviour of protein molecules, enzyme-substrate recognition, processes of irreversible thermodynamics, human-pollutant interactions, the cell biology of senescence, and electromagnetics. His premier interest, however, remains the epistemological aspects of mathematical biology.