Atnaujinkite slapukų nuostatas

El. knyga: Regression Analysis in R: A Comprehensive View for the Social Sciences

(Ball State University, Department of Educational Psychology)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Regression Analysis in R: A Comprehensive View for the Social Sciences covers the basic applications of multiple linear regression all the way through to more complex regression applications and extensions. Written for graduate level students of social science disciplines this book walks readers through bivariate correlation giving them a solid framework from which to expand into more complicated regression models. Concepts are demonstrated using R software and real data examples.

Key Features:





Full output examples complete with interpretation Full syntax examples to help teach R code Appendix explaining basic R functions Methods for multilevel data that are often included in basic regression texts End of Chapter Comprehension Exercises
1. The Issue of Causality.
2. Describing Simple Relationships.
3. Linear Regression Analysis.
4. Regression Assumptions and Interpretational Considerations.
5. Dummy Variables and Interactions.
6. Hierarchical Regression.
7. Moderation and Mediation.
8. Dealing with Non- Linearity.
9. Regression Models for Nested Data.
10. Fixed Effects Modeling.
Jocelyn E. Bolin is professor in the Department of Educational Psychology at Ball State University, where she teaches courses on introductory and intermediate statistics, multiple regression analysis, and multilevel modeling to graduate students in social science disciplines. She earned a PhD in educational psychology from Indiana University Bloomington. Her research interests include statistical methods for classification and clustering and use of multilevel modeling in the social sciences.