Atnaujinkite slapukų nuostatas

El. knyga: Regression-Based Normative Data for Psychological Assessment: A Hands-On Approach Using R

  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Jun-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031509513
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Jun-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031509513

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Over the last 20 years, so-called regression-based normative methods have become increasingly popular. In this approach, regression models for the mean and the residual variance structure are used to derive the normative data. The regression-based normative approach has some important advantages over the traditional normative approach, e.g., it allows for deriving more fine-grained norms and typically requires a substantially smaller sample size to derive accurate norms.

This book focuses on regression-based methods to derive normative data. The target audience are psychologists and other researchers in the behavioral sciences who are interested in deriving normative data for psychological tests (e.g., cognitive tests, questionnaires, rating scales, etc.). The book provides the essential theoretical background that is needed to understand the methodology, with a strong emphasis on the practical/real-life application of the methodology. To this end, the book is also accompanied by an open-source software package (the R library NormData) that is used to exemplify how normative data can be derived in several case studies.


  1. General introduction
  2. The R programming language
  3. Normative data accounting for a binary independent variable
  4. Assumption of the normal error regression model
  5. Normative data accounting for a non-binary qualitative independent variable
  6. Normative data accounting for a quantitative independent variable
  7. Normative data accounting for multiple qualitative and/or quantitative independent variables
  8. Quantifying uncertainty in regression-based norms
Wim Van der Elst (PhD) has a background in psychology and statistics, and is currently employed as a statistician in the pharmaceutical industry. He has published extensively on regression-based normative data, psychometrics, psychological assessment, and the statistical evaluation of biomarkers. He is also the lead programmer of several R libraries.