Atnaujinkite slapukų nuostatas

El. knyga: Relativistic Electronic Structure Theory - Fundamentals

Volume editor (University of Auckland, New Zealand)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The first volume of this two part series is concerned with the fundamental aspects of relativistic quantum theory, outlining the enormous progress made in the last twenty years in this field. The aim was to create a book such that researchers who become interested in this exciting new field find it useful as a textbook, and do not have to rely on a rather large number of specialized papers published in this area.

· No title is currently available that deals with new developments in relativistic quantum electronic structure theory
· Interesting and relevant to graduate students in chemistry and physics as well as to all researchers in the field of quantum chemistry
· As treatment of heavy elements becomes more important, there will be a constant demand for this title

Daugiau informacijos

A Volume in the THEORETICAL AND COMPUTATIONAL CHEMISTRY Series
Preface v
Tour Historique
1(22)
Jean-Paul Desclaux
Introduction
1(1)
Dirac Equation
2(5)
Many Electron Systems
7(3)
Defining an effective Hamiltonian
7(2)
Electron-electron interaction
9(1)
Relativity and Atomic Structure
10(4)
Going to Molecules
14(6)
Dirac-Fock one-centre method
17(2)
Relativistic quantum chemistry
19(1)
Conclusions
20(3)
The Dirac Operator
23(84)
Bernd Thaller
Introduction
23(3)
Introducing the Dirac Equation
26(5)
The free Dirac equation
26(2)
Dirac equation in an external field
28(1)
Why the Dirac matrices are four dimensional
29(2)
State Space and Interpretation
31(3)
A Hilbert space for the Dirace equation
31(1)
Tentative one-particle interpretation
32(2)
Solving the Dirac Equation
34(10)
The stationary Dirac equation
36(1)
Fourier transform of the free Dirac equation
37(2)
Momentum space eigenvectors of the Dirac operator
39(1)
The helicity basis
40(1)
Plane wave solutions
41(1)
Forming wave packets
42(2)
Useful Subspaces
44(2)
Positive and negative energies
44(1)
Spin and helicity
45(1)
Relativistic Observables
46(3)
Standard position and velocity
46(1)
Classical velocity and zitterbewegung
47(2)
Electron-Positron Interpretation
49(5)
Relativistic Invariance
54(7)
Poincare transformations
54(1)
Convariance of the Dirac equation
55(2)
Lorentz boosts
57(2)
Rotations
59(2)
Discrete Lorentz transformations
61(1)
Classification of External Fields
61(4)
Poincare transformations of external fields
61(1)
Scalar potential
62(1)
Electromagnetic vector potential
63(1)
Anomalous magnetic moment
63(1)
Anomalous electric moment
64(1)
Pseudovector potential
64(1)
Pseudoscalar potential
64(1)
Properties of Dirac Operators
65(4)
Short Description of the Nonrelativistic Limit
69(8)
Relativistic corrections
71(4)
g-factor and Thomas precession
75(2)
Spherical Symmetry
77(11)
Which potentials are spherically symmetric?
77(2)
Introducing polar coordinates
79(2)
Operators commuting with the Dirac operator
81(1)
Angular momentum eigenfunctions
82(2)
The angular momentum eigenspaces
84(2)
The partial-wave subspaces
86(2)
The Hydrogen Atom
88(16)
The results
89(1)
Systematics of eigenstates
90(2)
Fall to the center, self-adjointness, and all that
92(2)
Influence of anomalous magnetic moment
94(1)
A useful similarity transformation
94(2)
Supersymmetry
96(2)
The ground state
98(2)
Excited states
100(3)
The BJL operator
103(1)
Summary
104(3)
Relativistic Self-Consistent Fields
107(96)
Ian P. Grant
Harry M. Quiney
Introduction
107(5)
Foundations
112(25)
Special relativistic notation: Minkowski space-time. Lorentz transformation
112(5)
Maxwell's equations
117(1)
The Dirac equation for free particles
118(2)
Dirac equation in external electromagnetic fields
120(2)
Quantum electrodynamics
122(1)
Quantization of the Dirac field in the Furry picture
123(3)
Quantization of the Maxwell field
126(3)
Relativistic Hamiltonian for many-electron systems
129(2)
The electron-electron interaction energy
131(4)
The Dirac-Hartree-Fock-Breit model
135(2)
Finite Matrix Methods for Dirac Hamiltonians
137(20)
Dirac central field wavefunctions
139(3)
Central field bispinors
142(1)
Angular spinor component
143(2)
Group theoretical properties
145(1)
Dirac radial equations
146(1)
Dirac hydrogenic atoms
146(2)
The Rayleigh-Ritz method for Dirac Hamiltonians
148(2)
Boundary conditions
150(3)
Kinetic matching
153(2)
Spinor basis sets
155(2)
DHFB Theory for Atoms
157(11)
The closed shell atom
158(1)
Construction of Hx
159(1)
Construction of GTTx
160(1)
Atoms: elimination of angular integration
161(3)
One-centre integrals for S-spinors and G-spinors
164(2)
Open shell atoms
166(2)
DHFB Theory for Molecules
168(10)
G-spinors, SGTF, CGTF and HGTF
169(3)
Gaussian products
172(2)
Integrals over products of G-spinors
174(2)
The generalized McMurchie-Davidson algorithm
176(2)
Implementation: the Bertha Code
178(8)
Choice of basis set exponents
178(1)
Computational cost of integral generation
179(1)
Economization using spinor symmetry
180(1)
Integral-direct Fock matrix evaluation
180(1)
Elimination of small terms
181(1)
Stepwise refinement
181(1)
Iteration strategies
182(1)
Relativistic methods for large systems
183(3)
Open Shells: MCDF Theory
186(5)
Optimiation with respect to the spinor basis
188(1)
The approach to self-consistency
189(2)
Survey of Relativistic Mean Field Calculations
191(3)
Atomic DHF calculations
191(1)
Molecular DHF calculations
192(2)
Conclusions
194(9)
Nuclear Charge Density Distributions in Quantum Chemistry
203(56)
Dirk Andrae
Introduction
203(2)
Nuclear Structure
205(6)
The nucleons
205(1)
The atomic nucleus
206(4)
Electric and magnetic fields generated by the nucleus
210(1)
Nuclear Charge Density Distributions: Their Potential and Other Properties
211(10)
General treatment
212(2)
Spherical nuclear charge density distributions
214(5)
Standardization of charge density distributions and relation to experimental data
219(2)
Nuclear Charge Density Distribution Models
221(13)
Point-like charge density distribution
222(1)
`Spherical shell' charge density distribution
223(1)
`Homogeneous' charge density distribution
224(1)
Gauss-type charge density distribution
225(1)
Fermi-type charge density distribution
226(2)
Fourier-Bessel charge density distribution
228(3)
Sum-of-Gaussians charge density distribution
231(3)
Nuclear Models in Quantum Chemistry
234(12)
The nuclear electrostatic potential
234(3)
Electronic structure calculations - the numerical approach
237(2)
One-electron atoms
239(3)
Many-electron systems
242(3)
Electronic structure calculations - the algebraic approach
245(1)
Other Properties Depending on the Nuclear Charge Distribution
246(4)
The electron-nucleus contact term
246(1)
Higher quantum electrodynamic effects
247(1)
Parity non-conservation
248(2)
Higher nuclear electric multipole moments
250(1)
Summary
250(9)
Basis Sets for Relativistic Calculations
259(32)
Knut Faegri, Jr.
Kenneth G. Dyall
Introduction
259(2)
The Dirac Equation for the Hydrogen Atom
261(2)
Types of Basis Functions
263(3)
The Kinetic Balance Requirement
266(4)
The Optimization of Basis Sets
270(3)
Describing the Small R Region
273(2)
Basis Set Shell Structure
275(2)
Family Basis Set
277(1)
Basis Set Beyond the DHF
278(3)
Large-Small Component Balance
281(1)
Examples of 4-Component Basis Sets in Applications
282(6)
Concluding Remarks
288(3)
Post Dirac-Fock-Methods - Electron Correlation
291(41)
Lucas Visscher
Introduction
291(2)
The Dirac-Coulomb-Briet Hamiltonian
293(10)
The Hamiltonian in second quantization
295(7)
Symmetry relations between the matrix elements
302(1)
Approximate Hamiltonians
303(4)
Neglect of spin-orbit coupling
304(2)
Approximations to the Coulomb-Breit matrix elements
306(1)
Many-Body Perturbation Theory
307(2)
Configuration Interaction
309(12)
Kramers-unrestricted configuration interaction
311(2)
Use of group chains to utilize molecular symmetry
313(2)
Coupling coefficients in non-symmetry adapted graphs
315(3)
Coupling coefficients in symmetry adapted graphs
318(1)
Kramers-restricted configuration interaction
319(2)
Coupled Cluster Theory
321(8)
Single reference unrestricted coupled cluster theory
321(4)
Single reference restricted coupled cluster theory
325(1)
Fock space coupled cluster methods
326(3)
Concluding Remarks
329(3)
Post Dirac-Fock-Methods - Properties
332(69)
Trond Saue
Introduction
332(1)
Theory of Molecular Properties
333(15)
Definition
334(5)
Rayleigh-Schrodinger perturbation theory
339(2)
Variational perturbation theory
341(5)
Propagators
346(2)
Electromagnetic Interactions
348(21)
Classical electrodynamics
348(4)
The interaction of charged particles with electromagnetic fields
352(4)
The Dirac equation in the presence of external electromagnetic fields
356(6)
Multipole Expansions
362(1)
Multipolar gauge
362(2)
Electric multipoles
364(3)
Magnetic multipoles
367(2)
Hamiltonians
369(10)
The zeroth order Hamiltonian
369(2)
General structure of perturbation operators
371(2)
Specific perturbations
373(1)
Electromagnetic fields
374(2)
Nuclear spins
376(1)
Nuclear moments
376(1)
Relativistic and non-relativistic perturbation operators
377(2)
Molecular Properties at the Closed-Shell 4-Component Relativistic Hartree-Fock Level
379(15)
The quasienergy
379(4)
First order response of the wavefunction
383(6)
Excitation energies
389(1)
The linear response function
390(1)
The quadratic response function
391(3)
Closing Remarks
394(7)
Picture change
394(1)
Double perturbation theory
395(2)
Conclusion
397(4)
QED Theory of Atoms
401(67)
Leonti N. Labzowsky
Igor Goidenko
Introduction
401(2)
The Principles of QED
403(30)
Dirac equation for the electron in an external field
403(4)
Electromagnetic field: classical theory
407(5)
Quantization of electromagnetic field
412(4)
Quantization of electron-positron field
416(3)
Interaction of quantized fields
419(3)
Feynman graphs
422(4)
Ultraviolet divergencies: regularization and renormalization
426(7)
QED Theory of the Interelectron Interaction in Atoms
433(12)
Adiabatic S-matrix formalism
433(2)
First-order interaction
435(3)
Second-order interaction
438(3)
Dirac-Hartree-Fock approximation
441(2)
Dirac-Columb-Breit Hamiltonian
443(2)
QED Corrections for Light Atoms
445(8)
Radiative corrections in hydrogen: lowest order
445(4)
Radiative corrections in hydrogen: higher orders
449(2)
QED corrections in many-electron atoms
451(2)
QED Corrections in Heavy Atoms
453(15)
Electron self-energy: potential expansion
453(4)
Electron self-energy: partial wave renormalization
457(2)
Vacuum polarization
459(2)
Radiative corrections for the ns valence electrons for heavy atoms
461(7)
Parity Violation
468(55)
Jonathan Sapirstein
Introduction
468(3)
The Weak Interactions and Atomic Physics
471(4)
Heavy Ions as a Laboratory for Many-Body Theory
475(17)
Furry representation and S-matrix theory
476(3)
Lowest order results
479(1)
One-photon physics
480(4)
Two-photon physics
484(6)
Three-photon physics
490(1)
The two-loop Lamb shift
491(1)
Parity Nonconservation in Cesium
492(25)
Many body perturbation theory
495(8)
All-order calculations
503(2)
Mixed-parity MBPT
505(4)
Sum-over-states for PNC amplitude
509(1)
Smaller PNC contributions
510(1)
Breit interaction
510(1)
Nuclear density
511(1)
Nuclear spin-dependent effects
512(1)
e-e weak interaction
513(1)
Comparison with experiment
513(1)
Prospects for higher theoretical accuracy
514(1)
Recent developments
515(1)
Stark polarizability
516(1)
Breit interaction
516(1)
Radiative corrections
516(1)
Electron Dipole Moments
517(6)
Relativistic Density Functional Theory: Foundations and Basic Formalism
523(99)
Eberhard Engel
Introduction
524(5)
Field Theoretical Background
529(7)
Foundations and Basic Formalism
536(23)
Existence theorem
536(6)
Relativistic Kohn-Sham equations
542(7)
Variants of RDFT
549(4)
Relativistic optimized potential method: A third generation of density functionals
553(4)
Nonrelativistic limit
557(2)
Relativistic Exchange-Correlation Functional: Concepts and Illustrative Results
559(23)
Relativistic implicit functionals
561(11)
Relativistic local density approximation
572(7)
Relativistic generalized gradient approximation
579(3)
Concluding Remarks
582(40)
Appendix: Quantization of Noninteracting Fermions
583(8)
Appendix: Renormalization Scheme of Vacuum QED
591(8)
Appendix: Relativistic Homogeneous Electron Gas
599(1)
Basic propagators
599(1)
Response functions
600(5)
Ground state energy
605(5)
Appendix: Renormalization of Inhomogeneous Electron Gas
610(3)
Appendix: Gradient Corrections to the Relativistic LDA
613(9)
Two-Component Methods and the Generalized Douglas-Kroll Transformation
622(42)
Alexander Wolf
Markus Reiher
Bernd A. Hess
Introduction
622(4)
Methods to Decouple the Dirac Equation
626(15)
Relationship between the large and small components
626(4)
Elimination of the small component
630(3)
Transformation to two components
633(8)
The Douglas-Kroll Method
641(11)
Generalized parameterisation of a unitary matrix
643(2)
The generalized Douglas-Kroll transformation
645(5)
Aspects of implementation
650(2)
Numerical Results with DKH3 and DKH4
652(4)
Transformation of the Wavefunction - Picture Change
656(3)
Conclusions and Perspectives
659(5)
Perturbation Theory of Relativistic Effects
664(94)
Werner Kutzelnigg
Introduction. Why Perturbation Theory?
665(3)
The Non-Relativistic Limit
668(24)
Units
668(1)
Eigenvalues and eigenfunctions
669(2)
The Levy-Leblond equation
671(4)
The Levy-Leblond equation in a central field
675(1)
The resolvent of the Dirac operator
676(1)
`Second-order Dirac equations'
677(1)
The Foldy-Wouthuysen transformation
678(3)
Electrodynamics in the vacuum, independent of the system of units
681(3)
The non-relativistic limit of electrodynamics
684(1)
The Levy-Leblond equation in a magnetic field
685(3)
Magnetic properties in the nonrelativistic limit
688(2)
Is spin a relativistic effect?
690(2)
Perturbation Theory Based on the Foldy-Wouthuysen Transformation
692(8)
A FW transformation in two steps
692(2)
Perturbation expansion of the operators
694(1)
PT of the eigenfunctions and eigenvalues
695(1)
The FW wavefunction
695(1)
A non-hermitian variant of the FW transformation
696(1)
Properties of the X operator
697(1)
The Douglas-Kroll-Hess transformation
698(2)
Direct Perturbation Theory
700(15)
The perturbation expansion
700(2)
Normalization conditions
702(1)
Formulation in terms of upper and lower components
702(2)
Application to H-like ions
704(2)
Infinite-order DPT
706(1)
Relation to Breit-Pauli form
707(2)
DPT of electric properties
709(3)
DPT of magnetic properties
712(1)
History
713(1)
The regular approximation and the method of Moore
714(1)
Stationary Direct Perturbation Theory
715(6)
Stationary conditions and stationary functionals
715(3)
Extremal properties
718(1)
Regularization of the trial function
719(2)
Quasidegenerate Direct Perturbation Theory
721(7)
Effective Hamiltonians in a model space
721(3)
Matrix representation of the effective Hamiltonian in the model space
724(1)
The FW transformation revisited
725(1)
Infinite-order quasi-degenerate DPT
726(2)
Many-Electron Systems
728(21)
The Dirac-Coulomb and the Levy-Leblond-Coulomb operator
728(4)
The Gaunt and the Breit interaction
732(2)
Higher orders in c-1
734(3)
The Brown-Ravenhall disease and related problems
737(1)
Relativistic Hartree-Fock in terms of DPT
738(7)
Relativistic MC-SCF in terms of DPT
745(1)
Density functional theory (DFT) in terms of DPT
746(1)
Relativistic corrections to explicitly correlated wavefunctions
746(3)
Direct Perturbation Theory Using Energy Gradients or the Finite Perturbations
749(2)
Conclusions, Merits and Drawbacks of Direct Perturbation Theory
751(1)
Appendix: The Concept of Effective Hamiltonians
752(2)
Glossary
754(4)
Perturbation Theory Based on Quasi-Relativistic Hamiltonians
758(35)
Dage Sundholm
Introduction
758(2)
General Theory
760(4)
Elimination of the small component
760(1)
The Levy-Leblond equation
761(1)
The ZORA ansatz
761(1)
The general ansatz
762(1)
The ERA ansatz
762(1)
The transformed Dirac equation
763(1)
Quasi-Relativistic Hamiltonians
764(3)
Era
765(1)
Mera
765(1)
Zora
766(1)
Iora
766(1)
Miora
767(1)
Perturbation Energy Expansions
767(4)
First-Order Properties
771(6)
Electrical properties
771(3)
Picture change
774(1)
Magnetic properties
774(3)
Computational Methods
777(1)
Applications
778(10)
Iora
778(1)
Era
778(1)
Miora and Mera
779(4)
Iora+Pt and Era+Pt
783(1)
Optimized Era
783(5)
Summary
788(5)
Relativistic Effective Core Potentials
793(70)
Michael Dolg
Introduction
793(102)
Relativistic Effects
895
All-Electron Methods
801(5)
Dirac-Coulomb(-Breit) Hamiltonian
802(2)
Douglas-Kroll-Hess Hamiltonian
804(1)
Wood-Boring Hamiltonian
805(1)
Valence-Only Methods
806(38)
Core-valence separation
807(3)
Valence-only model Hamiltonian
810(2)
Model potentials
812(3)
Pseudopotentials
815(4)
Analytical form of pseudopotentials
819(2)
Shape-consistent pseudopotentials
821(3)
Energy-consistent pseudopotentials
824(5)
Core-polarization potentials
829(6)
Core-core/nucleus repulsion
835(1)
Valence basis sets
836(8)
Calibration Studies
844(11)
Atomic results
845(2)
Molecular results
847(8)
Conclusions
855(8)
Relativistic Solid State Theory
863(57)
Niels E. Christensen
Introduction
864(1)
Effects due to Relativistic Shifts in ε(k)
865(4)
Electronic States: SO-Coupling and Crystal Symmetry
869(17)
Spin splitting in semiconductors
872(14)
Electronic States: SO-Coupling and Spin Polarization
886(14)
Relativistic band structures
887(9)
Beyond LSDA
896(4)
Magnetooptical and Magnetoelastic Effects
900(9)
Magnetic dichroism
901(3)
Magnetic anisotropy, magnetostriction
904(2)
The Kerr effect
906(3)
Conclusion
909(11)
Index 920