|
PART I THE PHYSICS OF RELATIVISTIC HYDRODYNAMICS |
|
|
|
1 A Brief Review of General Relativity |
|
|
3 | (65) |
|
|
3 | (1) |
|
1.2 The concept of spacetime |
|
|
4 | (1) |
|
1.3 Spacetime as a manifold |
|
|
5 | (19) |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
9 | (3) |
|
1.3.4 Gradients of a function |
|
|
12 | (1) |
|
1.3.5 A geometrical view of vectors and covectors |
|
|
13 | (2) |
|
|
15 | (2) |
|
|
17 | (3) |
|
1.3.8 The most important tensor: the metric |
|
|
20 | (3) |
|
1.3.9 Splitting a tensor through a vector |
|
|
23 | (1) |
|
1.4 Flat spacetime: special relativity |
|
|
24 | (5) |
|
1.5 Curved spacetimes: general relativity |
|
|
29 | (17) |
|
|
31 | (3) |
|
1.5.2 Covariant derivative and Christoffel symbols |
|
|
34 | (3) |
|
1.5.3 Symmetries and Killing vector fields |
|
|
37 | (1) |
|
|
38 | (3) |
|
|
41 | (5) |
|
|
46 | (2) |
|
1.7 Spacetimes of astrophysical relevance |
|
|
48 | (13) |
|
1.7.1 Non-rotating black holes: the Schwarzschild solution |
|
|
49 | (5) |
|
1.7.2 Rotating black holes: the Kerr solution |
|
|
54 | (5) |
|
1.7.3 The Friedmann--Robertson--Walker metric |
|
|
59 | (2) |
|
1.8 Gravitational radiation |
|
|
61 | (5) |
|
|
66 | (1) |
|
|
67 | (1) |
|
2 A Kinetic-Theory Description of Fluids |
|
|
68 | (65) |
|
2.1 On the fluid approximation |
|
|
68 | (2) |
|
2.2 Newtonian kinetic theory |
|
|
70 | (19) |
|
2.2.1 The Boltzmann equation |
|
|
70 | (5) |
|
|
75 | (3) |
|
2.2.3 The moment equations |
|
|
78 | (3) |
|
2.2.4 The Maxwell--Boltzmann equilibrium distribution |
|
|
81 | (3) |
|
2.2.5 The zero-order approximation: perfect fluids |
|
|
84 | (3) |
|
2.2.6 The first-order approximation: non-perfect fluids |
|
|
87 | (2) |
|
2.3 Relativistic kinetic theory |
|
|
89 | (14) |
|
2.3.1 The relativistic Boltzmann equation |
|
|
90 | (1) |
|
2.3.2 Relativistic transport fluxes |
|
|
91 | (2) |
|
2.3.3 The relativistic H-theorem |
|
|
93 | (2) |
|
2.3.4 The relativistic moment equations |
|
|
95 | (1) |
|
2.3.5 The general-relativistic hydrodynamic equations |
|
|
96 | (1) |
|
2.3.6 Relativistic equilibrium distributions |
|
|
97 | (4) |
|
2.3.7 The laws of thermodynamics |
|
|
101 | (2) |
|
|
103 | (28) |
|
2.4.1 Degenerate relativistic fluid |
|
|
109 | (1) |
|
2.4.2 Non-degenerate relativistic fluid |
|
|
110 | (1) |
|
2.4.3 Non-degenerate non-relativistic fluid |
|
|
111 | (1) |
|
2.4.4 Ultrarelativistic fluid |
|
|
112 | (2) |
|
2.4.5 Degenerate Fermi fluid |
|
|
114 | (1) |
|
|
115 | (3) |
|
|
118 | (5) |
|
|
123 | (3) |
|
|
126 | (2) |
|
2.4.10 Newtonian and relativistic barotropic fluids |
|
|
128 | (3) |
|
|
131 | (1) |
|
|
132 | (1) |
|
3 Relativistic Perfect Fluids |
|
|
133 | (57) |
|
3.1 Kinematic properties of fluids |
|
|
133 | (5) |
|
3.1.1 Kinematic shear, expansion and vorticity |
|
|
133 | (4) |
|
3.1.2 Evolution laws of the kinematic quantities |
|
|
137 | (1) |
|
3.2 Mass current and energy--momentum of perfect fluids |
|
|
138 | (5) |
|
3.3 Hydrodynamics equations of perfect fluids |
|
|
143 | (2) |
|
3.4 Perfect fluids and symmetries |
|
|
145 | (2) |
|
3.5 The Newtonian limit of the hydrodynamic equations |
|
|
147 | (3) |
|
|
150 | (2) |
|
3.6.1 Bernoulli's theorem |
|
|
150 | (2) |
|
3.6.2 Relativistic Bernoulli theorem |
|
|
152 | (1) |
|
|
152 | (10) |
|
3.7.1 Newtonian irrotational flows |
|
|
152 | (2) |
|
3.7.2 Kelvin--Helmholtz theorem |
|
|
154 | (1) |
|
3.7.3 Relativistic vorticity |
|
|
155 | (2) |
|
3.7.4 Relativistic irrotational flows |
|
|
157 | (2) |
|
3.7.5 Relativistic Kelvin--Helmholtz theorem |
|
|
159 | (3) |
|
|
162 | (2) |
|
3.9 A velocity-potential approach to relativistic hydrodynamics |
|
|
164 | (4) |
|
3.10 A variational principle for relativistic hydrodynamics |
|
|
168 | (7) |
|
|
175 | (12) |
|
3.11.1 Coupled multifluids |
|
|
175 | (4) |
|
3.11.2 Interacting multifluids |
|
|
179 | (8) |
|
|
187 | (1) |
|
|
188 | (2) |
|
4 Linear and Nonlinear Hydrodynamic Waves |
|
|
190 | (68) |
|
4.1 Hyperbolic systems of partial differential equations |
|
|
190 | (8) |
|
4.1.1 Quasi-linear formulation |
|
|
190 | (5) |
|
4.1.2 Conservative formulation |
|
|
195 | (3) |
|
4.2 Linear and nonlinear behaviour |
|
|
198 | (10) |
|
4.2.1 Characteristic equations for linear systems |
|
|
198 | (2) |
|
|
200 | (3) |
|
4.2.3 Characteristic curves and caustics |
|
|
203 | (3) |
|
4.2.4 Domain of determinacy and region of influence |
|
|
206 | (2) |
|
4.3 Linear hydrodynamic waves |
|
|
208 | (1) |
|
|
208 | (1) |
|
4.4 Nonlinear hydrodynamic waves |
|
|
209 | (14) |
|
4.4.1 Simple waves and discontinuous waves |
|
|
209 | (2) |
|
|
211 | (3) |
|
|
214 | (8) |
|
4.4.4 Contact discontinuities |
|
|
222 | (1) |
|
|
223 | (4) |
|
4.6 Solution of the one-dimensional Riemann problem |
|
|
227 | (6) |
|
4.6.1 Limiting relative velocities |
|
|
228 | (5) |
|
4.7 Solution of the multidimensional Riemann problem |
|
|
233 | (12) |
|
4.7.1 Jumps across a shock wave |
|
|
235 | (1) |
|
4.7.2 Jumps across a rarefaction wave |
|
|
236 | (1) |
|
4.7.3 Limiting relative velocities |
|
|
237 | (2) |
|
4.7.4 Relativistic effects in multidimensional Riemann problems |
|
|
239 | (4) |
|
4.7.5 Shock-detection techniques |
|
|
243 | (2) |
|
4.8 Stability of shock waves |
|
|
245 | (4) |
|
4.9 General-relativistic discontinuities |
|
|
249 | (6) |
|
|
255 | (1) |
|
|
256 | (2) |
|
5 Reaction Fronts: Detonations and Deflagrations |
|
|
258 | (27) |
|
5.1 Basic properties of reaction fronts |
|
|
258 | (1) |
|
|
259 | (3) |
|
5.3 Relativistic detonations |
|
|
262 | (4) |
|
5.4 Relativistic deflagrations |
|
|
266 | (2) |
|
5.5 Stability of reaction fronts |
|
|
268 | (15) |
|
5.5.1 Stability of detonations |
|
|
271 | (10) |
|
5.5.2 Stability of deflagrations |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
284 | (1) |
|
6 Relativistic Non-Perfect Fluids |
|
|
285 | (34) |
|
6.1 On the four-velocity of a non-perfect fluid |
|
|
285 | (2) |
|
6.2 The energy--momentum tensor of non-perfect fluids |
|
|
287 | (3) |
|
6.3 Hydrodynamic equations of non-perfect fluids |
|
|
290 | (1) |
|
6.3.1 The general form of the momentum and energy equations |
|
|
290 | (1) |
|
6.3.2 The equilibrium state |
|
|
291 | (1) |
|
6.4 Classical Irreversible Thermodynamics (first-order theories) |
|
|
291 | (5) |
|
6.4.1 The constitutive equations |
|
|
292 | (2) |
|
6.4.2 The Newtonian limit: Navier--Stokes and heat conduction |
|
|
294 | (2) |
|
6.5 The importance of a causal theory |
|
|
296 | (3) |
|
6.5.1 Parabolic versus hyperbolic |
|
|
296 | (2) |
|
6.5.2 Non-causality of Classical Irreversible Thermodynamics |
|
|
298 | (1) |
|
6.6 Extended Irreversible Thermodynamics (second-order theories) |
|
|
299 | (13) |
|
6.6.1 The Israel--Stewart formulation |
|
|
300 | (3) |
|
6.6.2 Characteristic speeds of the Israel--Stewart formulation |
|
|
303 | (3) |
|
6.6.3 Divergence-type theories |
|
|
306 | (6) |
|
|
312 | (2) |
|
|
314 | (1) |
|
|
315 | (4) |
|
PART II NUMERICAL RELATIVISTIC HYDRODYNAMICS |
|
|
|
7 Formulations of the Einstein--Euler Equations |
|
|
319 | (67) |
|
7.1 The 3+1 decomposition of spacetime |
|
|
319 | (5) |
|
7.2 Formulations of the Einstein equations |
|
|
324 | (36) |
|
7.2.1 Spherically symmetric Lagrangian formulations |
|
|
325 | (4) |
|
7.2.2 The ADM formulation |
|
|
329 | (6) |
|
7.2.3 Conformal traceless formulations |
|
|
335 | (8) |
|
7.2.4 Gauge conditions in 3+1 formulations |
|
|
343 | (3) |
|
7.2.5 The generalised harmonic formulation |
|
|
346 | (4) |
|
7.2.6 Constraint equations, initial data and constrained evolution |
|
|
350 | (10) |
|
7.3 Formulations of the hydrodynamic equations |
|
|
360 | (23) |
|
7.3.1 The Wilson formulation |
|
|
360 | (2) |
|
7.3.2 The importance of conservative formulations |
|
|
362 | (2) |
|
7.3.3 The 3+1 "Valencia" formulation |
|
|
364 | (10) |
|
7.3.4 The covariant formulation |
|
|
374 | (1) |
|
7.3.5 The light-cone formulation |
|
|
375 | (2) |
|
7.3.6 The discontinuous Galerkin formulation |
|
|
377 | (6) |
|
|
383 | (1) |
|
|
384 | (2) |
|
8 Numerical Relativistic Hydrodynamics: Finite-Difference Methods |
|
|
386 | (28) |
|
8.1 The discretisation process |
|
|
387 | (3) |
|
|
390 | (6) |
|
8.2.1 Consistency, convergence and stability |
|
|
394 | (2) |
|
8.3 Finite-difference methods |
|
|
396 | (13) |
|
8.3.1 Analysis of the numerical stability |
|
|
396 | (3) |
|
|
399 | (2) |
|
|
401 | (1) |
|
8.3.4 The Lax--Friedrichs scheme |
|
|
402 | (2) |
|
8.3.5 The leapfrog scheme |
|
|
404 | (1) |
|
8.3.6 The Lax--Wendroff scheme |
|
|
405 | (2) |
|
8.3.7 Kreiss--Oliger dissipation |
|
|
407 | (2) |
|
8.4 Artificial-viscosity approaches |
|
|
409 | (3) |
|
|
412 | (1) |
|
|
413 | (1) |
|
9 Numerical Relativistic Hydrodynamics: HRSC Methods |
|
|
414 | (45) |
|
|
414 | (6) |
|
9.1.1 Rankine--Hugoniot conditions |
|
|
414 | (2) |
|
9.1.2 Finite-volume conservative numerical schemes |
|
|
416 | (2) |
|
9.1.3 Finite-difference conservative numerical schemes |
|
|
418 | (2) |
|
|
420 | (7) |
|
|
420 | (1) |
|
9.2.2 Total variation diminishing methods |
|
|
421 | (2) |
|
|
423 | (4) |
|
9.3 Reconstruction techniques |
|
|
427 | (9) |
|
9.3.1 Slope-limiter methods |
|
|
428 | (2) |
|
9.3.2 The piecewise-parabolic method |
|
|
430 | (4) |
|
9.3.3 Reconstruction in characteristic variables |
|
|
434 | (2) |
|
9.4 Approximate Riemann solvers |
|
|
436 | (11) |
|
9.4.1 Incomplete Riemann solvers |
|
|
436 | (3) |
|
9.4.2 Complete Riemann solvers |
|
|
439 | (8) |
|
|
447 | (5) |
|
9.5.1 Explicit Runge--Kutta methods |
|
|
448 | (1) |
|
9.5.2 Implicit-explicit Runge--Kutta methods |
|
|
449 | (3) |
|
9.6 Central numerical schemes |
|
|
452 | (5) |
|
9.6.1 Staggered central schemes |
|
|
453 | (2) |
|
9.6.2 Non-staggered central schemes |
|
|
455 | (2) |
|
|
457 | (1) |
|
|
458 | (1) |
|
10 Numerical Relativistic Hydrodynamics: High-Order Methods |
|
|
459 | (34) |
|
10.1 Why high-order numerical methods? |
|
|
459 | (1) |
|
10.2 ENO and WENO methods for hyperbolic conservation laws |
|
|
460 | (12) |
|
10.2.1 Finite-volume ENO schemes |
|
|
461 | (5) |
|
10.2.2 Finite-volume WENO schemes |
|
|
466 | (2) |
|
10.2.3 Finite-difference ENO schemes |
|
|
468 | (4) |
|
10.2.4 Finite-difference WENO schemes |
|
|
472 | (1) |
|
10.3 Discontinuous Galerkin methods |
|
|
472 | (7) |
|
10.3.1 The essence of DG methods |
|
|
472 | (3) |
|
10.3.2 An example: a RKDG scheme in spherical symmetry |
|
|
475 | (4) |
|
|
479 | (6) |
|
10.4.1 The original formulation |
|
|
479 | (3) |
|
10.4.2 The local spacetime DG scheme |
|
|
482 | (3) |
|
10.5 Extension to multidimensional problems |
|
|
485 | (4) |
|
10.5.1 Finite-difference multidimensional schemes |
|
|
486 | (1) |
|
10.5.2 Finite-volume multidimensional schemes |
|
|
487 | (2) |
|
|
489 | (1) |
|
|
490 | (3) |
|
PART III APPLICATIONS OF RELATIVISTIC HYDRODYNAMICS |
|
|
|
11 Relativistic Hydrodynamics of Non-Selfgravitating Fluids |
|
|
493 | (100) |
|
11.1 Similar and self-similar flows |
|
|
494 | (13) |
|
11.1.1 One-dimensional self-similar flows |
|
|
495 | (6) |
|
11.1.2 Self-similar hydrodynamics of a bubble |
|
|
501 | (3) |
|
11.1.3 Self-similar hydrodynamics of a drop |
|
|
504 | (3) |
|
11.2 Relativistic blast waves |
|
|
507 | (6) |
|
11.3 Spherical flows onto and out of a compact object |
|
|
513 | (3) |
|
11.4 Spherical accretion onto a black hole |
|
|
516 | (8) |
|
11.5 Non-spherical accretion onto a moving black hole |
|
|
524 | (13) |
|
11.5.1 Accreting potential flows |
|
|
525 | (4) |
|
11.5.2 Bondi--Hoyle--Lyttleton flows |
|
|
529 | (8) |
|
11.6 Fluids in circular motion around a black hole |
|
|
537 | (4) |
|
11.6.1 Von Zeipel cylinders |
|
|
537 | (4) |
|
11.7 Geometrically thick tori |
|
|
541 | (12) |
|
11.7.1 The "runaway" instability |
|
|
548 | (1) |
|
11.7.2 On the sound speed in polytropic tori |
|
|
549 | (2) |
|
11.7.3 Thick tori in Schwarzschild--de Sitter spacetimes |
|
|
551 | (2) |
|
11.8 Relativistic accreting discs |
|
|
553 | (12) |
|
11.8.1 Rest-mass conservation |
|
|
558 | (1) |
|
11.8.2 Radial momentum conservation |
|
|
559 | (1) |
|
11.8.3 Angular momentum conservation |
|
|
560 | (2) |
|
11.8.4 Hydrostatic vertical equilibrium |
|
|
562 | (1) |
|
11.8.5 Energy conservation |
|
|
563 | (2) |
|
|
565 | (15) |
|
11.9.1 Apparently superluminal jets |
|
|
566 | (3) |
|
11.9.2 Hydrodynamic acceleration mechanisms |
|
|
569 | (8) |
|
11.9.3 Numerical modelling of relativistic jets |
|
|
577 | (3) |
|
11.10 Relativistic heavy-ion collisions |
|
|
580 | (9) |
|
|
580 | (4) |
|
11.10.2 One-dimensional Bjorken flow |
|
|
584 | (1) |
|
11.10.3 Cylindrically symmetric flows |
|
|
585 | (4) |
|
|
589 | (1) |
|
|
590 | (3) |
|
12 Relativistic Hydrodynamics of Selfgravitating Fluids |
|
|
593 | (66) |
|
|
593 | (6) |
|
|
599 | (5) |
|
|
604 | (8) |
|
12.3.1 Uniformly rotating stars |
|
|
604 | (4) |
|
12.3.2 Differentially rotating stars |
|
|
608 | (4) |
|
12.4 Collapse of a compact star to a black hole |
|
|
612 | (11) |
|
12.4.1 Dust collapse: the Oppenheimer--Snyder solution |
|
|
612 | (5) |
|
|
617 | (6) |
|
12.5 Dynamics of binary neutron stars |
|
|
623 | (24) |
|
12.5.1 Broadbrush picture |
|
|
623 | (4) |
|
12.5.2 Dynamics of equal-mass binaries |
|
|
627 | (10) |
|
12.5.3 Dynamics of unequal-mass binaries |
|
|
637 | (10) |
|
12.6 Dynamics of black-hole--neutron-star binaries |
|
|
647 | (10) |
|
12.6.1 Broadbrush picture |
|
|
648 | (9) |
|
|
657 | (1) |
|
|
658 | (1) |
|
Appendix A Geometrised System of Units |
|
|
659 | (2) |
|
Appendix B Notable Thermodynamic Expressions |
|
|
661 | (4) |
|
B.1 Thermodynamic quantities and potentials |
|
|
661 | (2) |
|
|
663 | (2) |
|
Appendix C Notable Tensors |
|
|
665 | (3) |
|
C.1 Relativistic expressions |
|
|
665 | (2) |
|
C.2 Newtonian expressions |
|
|
667 | (1) |
|
Appendix D Common Practices in Numerical Relativistic Hydrodynamics |
|
|
668 | (10) |
|
D.1 Conversion from conserved to primitive variables |
|
|
668 | (5) |
|
D.1.1 Analytic equations of state |
|
|
668 | (3) |
|
D.1.2 Tabulated equations of state |
|
|
671 | (2) |
|
D.2 Treatment of atmospheres |
|
|
673 | (1) |
|
D.3 Guaranteeing the positivity of pressure |
|
|
674 | (1) |
|
|
675 | (3) |
|
Appendix E Numerical Building Blocks |
|
|
678 | (4) |
|
|
678 | (1) |
|
E.2 Basic Riemann solvers |
|
|
679 | (1) |
|
E.3 Reference one-dimensional pseudo-code |
|
|
680 | (2) |
References |
|
682 | (39) |
Index |
|
721 | |