Atnaujinkite slapukų nuostatas

El. knyga: Relativistic Quantum Mechanics

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.

Recenzijos

Relativistic Quantum Mechanics is highly recommended for such insight not only to all working theoretical and experimental physicists, but for any specialists interested in the eventual philosophical impact of a manifestly covariant quantum theory on the future of scientific advancement in general. This seminal work by Horwitz can perhaps lead the way towards this fresh understanding. (Donald Reed, Foundations of Physics, Vol. 47, 2017)

1 Introduction and Some Problems Encountered in the Construction of a Relativistic Quantum Theory
1(8)
1.1 States in Relativistic Quantum and Classical Mechanics
1(2)
1.2 The Problem of Localization for the Solutions of Relativistic Wave Equations
3(6)
2 Relativistic Classical and Quantum Mechanics
9(24)
2.1 The Einstein Notion of Time
9(9)
2.2 Classical Mechanics
18(2)
2.3 The Quantum Theory
20(2)
2.4 The Newton-Wigner Problem
22(2)
2.5 The Landau-Peierls Problem
24(9)
Appendix A
30(3)
3 Spin, Statistics and Correlations
33(18)
3.1 Relativistic Spin and the Dirac Representation
33(9)
3.2 The Many Body Problem with Spin, and Spin-Statistics
42(2)
3.3 Construction of the Fock Space and Quantum Field Theory
44(3)
3.4 Induced Representation for Tensor Operators
47(4)
Appendix B
49(2)
4 Gauge Fields and Flavor Oscillations
51(20)
4.1 Abelian Gauge Fields
51(8)
4.2 Nonabelian Gauge Fields and Neutrino Oscillations
59(6)
4.3 The Hamiltonian for the Spin 1/2 Neutrinos
65(2)
4.4 CP and T Conjugation
67(4)
5 The Relativistic Action at a Distance Two Body Problem
71(26)
5.1 The Two Body Bound State for Scalar Particles
72(12)
5.2 Some Examples
84(4)
5.3 The Induced Representation
88(5)
5.4 The Stueckelberg String
93(4)
6 Experimental Consequences of Coherence in Time
97(16)
6.1 General Problem of Coherence in Time
97(1)
6.2 The Lindner Experiment
98(12)
6.3 Experiment Proposed by Palacios et al
110(3)
7 Scattering Theory and Resonances
113(30)
7.1 Foundations of Relativistic Scattering Theory
114(2)
7.2 The S Matrix
116(5)
7.3 Cross Sections
121(1)
7.4 Two Body Partial Wave Analysis
122(3)
7.5 Unitarity and the Levinson Theorem
125(1)
7.6 Resonances and Semigroup Evolution
126(4)
7.7 Lax Phillips Theory
130(7)
7.8 Relativistic Lee-Friedrichs Model
137(6)
8 Some Applications: The Electron Anomalous Moment, Invariant Berry Phases and the Spacetime Lattice
143(14)
8.1 The Anomalous Moment of the Electron
144(5)
8.2 Invariant Berry Phases
149(4)
8.3 The Spacetime Lattice
153(4)
9 Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS
157(16)
9.1 Dynamics of a Relativistic Geometric Hamiltonian System
158(1)
9.2 Addition of a Scalar Potential and Conformal Equivalence
159(4)
9.3 TeVeS and Kaluza-Klein Theory
163(2)
9.4 The Bekenstein-Sanders Vector Field as a Gauge Field
165(7)
9.5 Summary
172(1)
10 Relativistic Classical and Quantum Statistical Mechanics and Covariant Boltzmann Equation
173(28)
10.1 A Potential Model for the Many Body System
174(1)
10.2 The Microcanonical Ensemble
175(4)
10.3 Canonical Ensemble
179(5)
10.4 Grand Canonical Ensemble
184(3)
10.5 Relativistic Quantum Quantum Statistical Mechanics
187(4)
10.6 Relativistic High Temperature Boson Phase Transition
191(2)
10.7 Black Body Radiation
193(3)
10.8 Manifestly Covariant Relativistic Boltzmann Equation
196(5)
11 Discussion
201(2)
References 203(8)
Index 211