Atnaujinkite slapukų nuostatas

El. knyga: Relativistic Transitions in the Hydrogenic Atoms: Elementary Theory

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

When one approaches the study of the quantal relativistic theory of the electron, one may be surprised by the gap which lies between the frame of the experiments. This book uses a theory of the electron in which the mathematical language is the same as the one of the geometry of the space and time.

The aim of this volume is twofold. First, it is an attempt to simplify and clarify the relativistic theory of the hydrogen-like atoms. For this purpose we have used the mathematical formalism, introduced in the Dirac theory of the electron by David Hestenes, based on the use of the real Cli ord algebra Cl(M) associated with the Minkwoski space–time M, that is, the euclidean 4 R space of signature (1,3). This algebra may be considered as the extension to this space of the theory of the Hamilton quaternions (which occupies an importantplaceintheresolutionoftheDiracequationforthecentralpotential problem). The clarity comes from the real form given by D. Hestenes to the electron wavefunctionthatreplaces,inastrictequivalence,theDiracspinor.Thisform is directly inscribed in the frame of the geometry of the Minkwoski space in which the experiments are necessarily placed. The simplicity derives from the uni cation of the language used to describe the mathematical objects of the theory and the data of the experiments. The mathematics concerning the de nition and the use of the algebra Cl(M) are not very complicated. Anyone who knows what a vector space is will be able to understand the geometrical implications of this algebra. The lecture will be perhaps more di cult for the readers already acquainted with the complex formalism of the matrices and spinors, to the extent that the new language will appear di erent from the one that they have used. But the correspondence between the two formalisms is ensured in the text at each stage of the theory.

"Relativistic Transitions in the Hydrogenic Atoms" combines the physics of atoms and quantum physics. It explains relativistic electron transitions and the photoeffect on the basis of a quantal relativistic theory.

The Solutions of the Dirac Equation in Hydrogenic Atoms.- The
Electromagnetic Fields Created by Time-Sinusoidal Current.- The Dirac
Equation of the Electron in the Real Formalism.- The Solutions of the Dirac
Equation for the Central Potential in the Real Formalism.- Fields Created by
the Dirac Transition Currents Between Two States.- The Dirac Transition
Currents Between Two States.- The Field at Large Distance Created by the
Transition Currents.- Case of the Transitions P1/2-S1/2 and P3/2-S1/2.-
Interaction with Radiation.- Interaction with an Incident Wave: The
Retardation.- Relativistic Expression of the Matrix Elements.- The
Photoeffect.- The Radial Functions of the Continuum.- Matrix Elements for the
Transitions 1S1/2-Continuum.- Matrix Elements for the Relativistic
Transitions with Retardation 1S1/2-Continuum.- The Radiative Recombination.-
Interaction with a Magnetic Field.- The Zeeman Effect.- Addendum.- The
Contribution of the Discrete Spectrum to the Lamb Shift of the 1S1/2 State.