Atnaujinkite slapukų nuostatas

El. knyga: Renewable Energy in Power Systems

(Loughborough University, UK), (University of Strathclyde, UK)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Dec-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118788561
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Dec-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118788561

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An up to date account of renewable sources of electricity generation and their integration into power systems

With the growth in installed capacity of renewable energy (RE) generation, many countries such as the UK are relying on higher levels of RE generation to meet targets for reduced greenhouse gas emissions. In the face of this, the integration issue is now of increasing concern, in particular to system operators.  

This updated text describes the individual renewable technologies and their power generation characteristics alongside an expanded introduction to power systems and the challenges posed by high levels of penetrations from such technologies, together with an account of technologies and changes to system operation that can ease RE integration. 

Features of this edition:





Covers power conditioning, the characteristics of RE generators, with emphasis on their time varying nature, and the use of power electronics in interfacing RE sources to grids Outlines up to date RE integration issues such as power flow in networks supplied from a combination of conventional and renewable energy sources Updated coverage of the economics of power generation and the role of markets in delivering investment in sustainable solutions Considers the challenge of maintaining power balance in a system with increasing RE input, including recent moves toward power system frequency support from RE sources Offers an insightful perspective on the shape of future power systems including offshore networks and demand side management Includes worked examples that enhance this editions suitability as a textbook for introductory courses in RE systems technology

Firmly established as an essential reference, the Second Edition of Renewable Energy in Power Systems will prove a real asset to engineers and others involved in both the traditional power and fast growing renewables sector. This text should also be of particular benefit to students of electrical power engineering and will additionally appeal to non-specialists through the inclusion of background material covering the basics of electricity generation. 
Preface xvii
Acknowledgments xix
Authors xxi
Nomenclature xxiii
Chapter 1 Introduction 1(16)
1.1 Significance of the Topics
1(1)
1.2 Tribological Interface Systems
2(8)
1.2.1 Interface Systems Defined Based on Geometry
2(4)
1.2.2 Interface Systems Defined Based on Relative Motion
6(1)
1.2.3 Interface Systems Defined Based on Lubricating Media
7(2)
1.2.4 Interface Systems Defined Based on Lubrication Status
9(1)
1.3 Brief Historic Review
10(5)
1.3.1 Empirical Knowledge Accumulated in Early Years
10(1)
1.3.2 Pioneering Studies
11(1)
1.3.3 Establishment of Contact Mechanics and Lubrication Theory
11(1)
1.3.4 Rapid Development Assisted by Digital Computers
12(1)
1.3.5 Recent Advancements
13(1)
1.3.6 Conclusion Remarks
14(1)
1.4 Interfacial Mechanics
15(1)
1.5 Coverage of This Book
15(2)
Chapter 2 Properties of Engineering Materials and Surfaces 17(16)
2.1 Mechanical Properties of Typical Solid Materials
17(1)
2.2 Topographic Properties of Engineering Surfaces
18(6)
2.2.1 Engineering Surfaces
18(1)
2.2.2 Surface Characterization by Statistical Parameters
19(4)
2.2.3 Surface Characterization by Direct Digitization
23(1)
2.2.4 Rough Surfaces Generated by Computer
24(1)
2.3 Lubricant Properties
24(9)
2.3.1 Viscosity
25(1)
2.3.2 Effect of Temperature on Viscosity
25(1)
2.3.3 Effect of Pressure on Viscosity
26(2)
2.3.4 Density
28(1)
2.3.5 Non-Newtonian Behaviors
28(2)
2.3.6 Additives in Lubricants
30(3)
Chapter 3 Fundamentals of Contact Mechanics 33(48)
3.1 Introduction
33(1)
3.2 Basic Half-Space Elasticity Theories
33(7)
3.2.1 Potential Equations
33(2)
3.2.2 Displacement Due to Normal Loading
35(1)
3.2.3 Displacement Due to Tangential Traction
36(2)
3.2.4 General Equations for Surface Displacements
38(1)
3.2.5 Subsurface Stresses
39(1)
3.3 Line Contact Hertzian Theory
40(2)
3.3.1 Basic Model
40(1)
3.3.2 Contact Pressure and Surface Deformation
41(1)
3.3.3 Subsurface Stresses
42(1)
3.4 Point Contact Hertzian Theory
42(3)
3.4.1 Basic Model
42(1)
3.4.2 Contact Pressure and Surface Deformation
43(1)
3.4.3 Subsurface Stresses
44(1)
3.5 Contact Strength Analysis Based on the Subsurface Stress Field
45(9)
3.5.1 Theories for Yield Criteria
45(2)
3.5.2 Subsurface Stress Field and Yield Pressure in Line Contacts
47(1)
3.5.3 Subsurface Stress Field and Yield Pressure in Circular Contacts
48(1)
3.5.4 Subsurface Stress Field in Elliptical Contacts
48(2)
3.5.5 Effect of Friction on the Subsurface Stresses
50(2)
3.5.6 Contact Yield Initiation in a Case-Hardened Solid
52(2)
3.5.6.1 Basic Model
52(1)
3.5.6.2 Solution for Circular Contacts
52(1)
3.5.6.3 Solution for Line Contacts
53(1)
3.5.6.4 General Expressions
54(1)
3.6 Selected Basic Solutions
54(5)
3.6.1 Displacements Due to Concentrated Forces
54(1)
3.6.2 Surface Displacements Induced by Uniform Pressure
55(1)
3.6.2.1 2D Plane Strain Problem
55(1)
3.6.2.2 3D Half-Space Problems
56(1)
3.6.3 Indentation by a Rigid Punch
56(1)
3.6.4 Frictionless Indentation by a Blunt Wedge or Cone
57(1)
3.6.5 A Sinusoidal Wavy Surface in Contact with a Flat
57(2)
3.6.5.1 2D Wavy Surface
57(1)
3.6.5.2 3D Wavy Surface
58(1)
3.7 Contact with Rough Surfaces
59(7)
3.7.1 A Stochastic Model for Rough Surface Contacts
59(2)
3.7.2 Empirical Formulae Based on Numerical Solutions for Rough Surface Contacts
61(5)
3.7.2.1 Empirical Formulae by Lee and Ren (1996)
61(3)
3.7.2.2 Empirical Formulae by Chen et al. (2007)
64(2)
3.8 Contact of Multilayer Materials
66(13)
3.8.1 Problem Description
66(2)
3.8.2 Fourier Transforms of the Governing and Boundary/Interfacial Equations
68(2)
3.8.3 Structures of B and AC Matrices
70(4)
3.8.3.1 B Matrix and B Matrix Equation
70(2)
3.8.3.2 AC Matrix and AC Matrix Equation
72(2)
3.8.4 Solutions of Matrix Equations
74(3)
3.8.5 Typical Sample Cases
77(1)
3.8.6 Solution for Problems with a Single-Layer Coating
77(1)
3.8.7 Extended Hertzian Theories
78(1)
3.9 Closure
79(2)
Chapter 4 Numerical Methods for Solving Contact Problems 81(42)
4.1 Introduction
81(3)
4.1.1 Background
81(1)
4.1.2 FEM Approach
81(1)
4.1.3 Stochastic Models
81(1)
4.1.4 IC Matrix Approach
82(1)
4.1.5 Quadratic Programming Approach and CGM
83(1)
4.1.6 Fast Fourier Transform (FFT) Approaches
83(1)
4.1.7 Discrete Convolution and Fast Fourier Transform (DC-FFT) Approach
83(1)
4.1.8 Contact Problems with Inelastic and Inhomogeneous Materials
84(1)
4.2 Discretization with Influence Coefficients
84(9)
4.2.1 Basic Concept
84(1)
4.2.2 Influence Coefficients for 2D Half-Plane Problems
84(3)
4.2.2.1 ICs Based on Zero-Order Approximation
85(1)
4.2.2.2 ICs Based on First-Order Approximation
86(1)
4.2.2.3 ICs Based on Second-Order Approximation
86(1)
4.2.3 Influence Coefficients for 3D Half-Space Problems
87(6)
4.2.3.1 ICs Based on Zero-Order Approximation
88(1)
4.2.3.2 ICs Based on Bilinear Approximation
88(3)
4.2.3.3 ICs Based on Biquadratic Approximation
91(2)
4.3 Comparative Cases for Deformation Calculation
93(2)
4.3.1 Deformation Due to Indentation by a Rigid Punch
93(1)
4.3.2 Deformation Due to Cylindrical Contact Hertzian Pressure
94(1)
4.3.3 Deformation Due to Point-Contact Hertzian Pressure
95(1)
4.4 Solution for Contact Pressure Distribution
95(5)
4.4.1 Problem Description
95(2)
4.4.2 Conjugate Gradient Method for Solving Contact Problems
97(3)
4.5 Numerical Examples
100(2)
4.6 FFT-Based Methods for Efficient Surface Deformation Calculation
102(15)
4.6.1 Background
102(1)
4.6.2 Three Types of Convolution
103(1)
4.6.3 DC-FFT Algorithm for Non-Periodic Contact Problems
104(7)
4.6.3.1 Cyclic Convolution and the DC-FFT Algorithm
104(3)
4.6.3.2 DC-FFT Procedure for Point Contacts
107(1)
4.6.3.3 Method Comparisons
108(2)
4.6.3.4 Numerical Examples
110(1)
4.6.4 Continuous Convolution and Fourier Transform (CC-FT) and FRF-IC Conversion
111(3)
4.6.4.1 Description of the CC-FT Approach
111(2)
4.6.4.2 Validation and Sample Cases
113(1)
4.6.5 DCD-FFT, DC-CC-FFT, and DCS-FFT Approaches
114(3)
4.6.5.1 General Description
114(1)
4.6.5.2 DCD-FFT Algorithm
114(1)
4.6.5.3 DC-CC-FFT Algorithm
115(1)
4.6.5.4 DCS-FFT Algorithm
115(2)
4.7 Calculation of Subsurface Stresses
117(4)
4.7.1 General Equations
117(1)
4.7.2 Influence Coefficients
118(1)
4.7.3 DC-FFT Approach for Stress Calculation
119(1)
4.7.4 Additional Numerical Examples
120(1)
4.8 Closure
121(2)
Chapter 5 Fundamentals of Hydrodynamic Lubrication 123(30)
5.1 Introduction
123(1)
5.2 Reynolds Equation
123(16)
5.2.1 Derivation of Generalized Reynolds Equation
124(3)
5.2.2 Simplified Reynolds Equations
127(2)
5.2.3 Boundary Conditions for the Reynolds Equation
129(1)
5.2.4 Reynolds Equation for Non-Newtonian Lubricants
130(3)
5.2.5 Average Reynolds Equation
133(6)
5.3 Energy Equations
139(4)
5.3.1 Energy Equation for the Lubricant Film
139(2)
5.3.2 Heat Transfer Equations for Contacting Bodies
141(1)
5.3.3 Surface Temperature Equations
141(2)
5.4 Analytical Solutions for Simplified Bearing Problems
143(7)
5.4.1 General Description
143(1)
5.4.2 Infinitely Long Journal Bearings
144(3)
5.4.3 Infinitely Short Journal Bearings
147(1)
5.4.4 Infinitely Long Thrust Bearings
148(2)
5.5 Closure
150(3)
Chapter 6 Numerical Methods for Hydrodynamic Lubrication 153(30)
6.1 Finite Length Journal Bearings
153(9)
6.1.1 Finite Difference Method (FDM)
153(6)
6.1.2 Finite Element Method (FEM)
159(3)
6.2 Mixed Thermal Elastohydrodynamic Lubrication (TEHL) Analyses for Journal Bearings
162(8)
6.2.1 Background
162(1)
6.2.2 Hydrodynamic Lubrication Model Considering Roughness Effect
163(1)
6.2.3 Asperity Contact Models
164(1)
6.2.4 Evaluation of Body Deformations
165(1)
6.2.5 Thermal Analysis
166(1)
6.2.6 Numerical Procedure
167(1)
6.2.7 Typical Sample Results
168(2)
6.3 Piston Skirts in Mixed Lubrication
170(11)
6.3.1 Equation of Motion
171(1)
6.3.2 Average Reynolds Equation
172(2)
6.3.3 Wavy Surface Contact Pressure
174(1)
6.3.4 Deformations of Piston Skirts and Cylinder Bore
175(2)
6.3.5 Numerical Procedure
177(1)
6.3.6 Typical Sample Results
178(3)
6.4 Closure
181(2)
Chapter 7 Lubrication in Counterformal Contacts-Elastohydrodynamic Lubrication (EHL) 183(68)
7.1 Introduction
183(1)
7.2 Background and Early Studies
183(14)
7.2.1 Martin"s Theory (Isoviscous-Rigid)
183(2)
7.2.2 Blok"s Theory (Piezoviscous-Rigid)
185(1)
7.2.3 Herrebrugh"s Solution (Isoviscous-Elastic)
186(1)
7.2.4 Grubin"s Inlet Analysis (Piezoviscous-Elastic)
186(1)
7.2.5 First Full EHL Solution in Line Contacts by Petrusevich (1951)
187(1)
7.2.6 Full EHL Solution in Line Contacts by Dowson-Higginson (1959)
188(1)
7.2.7 First Full EHL Solution in Point Contacts by Ranger et al. (1975)
189(4)
7.2.8 Full EHL Solution in Point Contacts by Hamrock and Dowson (1976-1977)
193(2)
7.2.9 Dimensionless Parameter Groups
195(1)
7.2.10 Maps of Lubrication Regimes
196(1)
7.3 EHL Numerical Solution Methods
197(28)
7.3.1 Nonlinearity of EHL Equation Systems
197(1)
7.3.2 Straightforward Iterative Method
198(1)
7.3.3 Inverse Solution
199(1)
7.3.4 System Analysis through the Newton-Raphson Procedure
199(3)
7.3.5 Multi-Grid Method
202(3)
7.3.6 Coupled Differential Deflection Method
205(1)
7.3.7 Semi-System Approach
205(5)
7.3.7.1 Basic Concept
205(1)
7.3.7.2 Basic Formulation
206(1)
7.3.7.3 Discretization of the Pressure Flow Terms
206(1)
7.3.7.4 Discretization of the Entraining Flow Term
207(1)
7.3.7.5 Characteristics of the Coefficient Matrix
208(1)
7.3.7.6 Sample Mixed EHL Solutions from the Semi-System Approach
209(1)
7.3.8 Simulation of Contact by Using the EHL Equation System
210(3)
7.3.9 Effect of Differential Schemes
213(6)
7.3.9.1 General
213(1)
7.3.9.2 Differential Schemes for the Combined Entraining Flow Term
214(1)
7.3.9.3 Differential Schemes for the Separate Entraining Flow Terms
215(1)
7.3.9.4 Effect of Differential Scheme Arrangement
216(1)
7.3.9.5 Schemes for the Further Separated Entraining Flow Term
217(2)
7.3.9.6 Differential Schemes for the Squeeze Flow Term
219(1)
7.3.10 Effect of Mesh Density
219(5)
7.3.10.1 Background
219(1)
7.3.10.2 Dependence of Film Thickness Solution on Mesh Density
220(2)
7.3.10.3 Reasonable Mesh Density to be Used in Practice
222(1)
7.3.10.4 Limitations of the MG Approach
222(2)
7.3.11 Progressive Mesh Densification (PMD) Method
224(1)
7.4 Experimental Validation of Numerical Solution
225(2)
7.5 EHL with Arbitrary Entrainment Angle
227(5)
7.5.1 Background
227(1)
7.5.2 Formulation and Numerical Method
227(1)
7.5.3 Typical Results for Validating the Model and Showing the Basic Characteristics
228(2)
7.5.4 Curve-Fitting Formula
230(1)
7.5.5 Transition of Lubrication Condition with Roughness Considered
231(1)
7.6 Treatments for Starvation and Cavitation
232(8)
7.6.1 Background
232(1)
7.6.2 Conventional Treatment
233(2)
7.6.2.1 Review of Early Studies
233(1)
7.6.2.2 Reexamination of the Empirical Formulae
234(1)
7.6.2.3 Application
235(1)
7.6.3 Updated Treatment Based on JFO and Elrod
235(5)
7.6.3.1 Basic Concept and Formulation
235(1)
7.6.3.2 Numerical Solution Method
236(1)
7.6.3.3 Typical Sample Solutions
237(1)
7.6.3.4 Comparison with Conventional Treatment
238(2)
7.7 Isothermal EHL Behaviors with Smooth Surfaces
240(9)
7.7.1 Background
240(1)
7.7.2 Entraining Speed Effect
241(3)
7.7.3 Load Effect
244(2)
7.7.4 Effect of Contact Ellipticity
246(1)
7.7.5 Effect of Materials Properties
247(4)
7.7.5.1 Effect of Different Viscosity Models
247(1)
7.7.5.2 Effect of Lubricant Piezoviscous Property
248(1)
7.7.5.3 Effect of Elastic Property of Solids
249(1)
7.8 Closure
249(2)
Chapter 8 Mixed Lubrication with Rough Surfaces 251(48)
8.1 Introduction
251(4)
8.1.1 Background
251(1)
8.1.2 Review of Stochastic Models
251(1)
8.1.3 Review of Deterministic Models
252(1)
8.1.4 Review of Combined Stochastic-Deterministic Approach
253(1)
8.1.5 Terminology
254(1)
8.2 Stochastic Approach
255(4)
8.3 Deterministic Approach for Artificial Roughness
259(7)
8.3.1 General
259(1)
8.3.2 Calculation Methods for Derivatives al-flaX and aillaX
260(1)
8.3.3 Error Analysis
261(1)
8.3.4 Sample Validation Cases
262(4)
8.4 Deterministic Approach for Machined Roughness
266(5)
8.4.1 Problem Description
266(1)
8.4.2 Two Ways to Calculate partialdifferentialS/partialdifferentialX and partialdifferentialS/partialdifferentialT
266(1)
8.4.3 Accuracy Comparison Between Methods I+D and D+I
267(2)
8.4.4 Sample Rough Surface EHL Solutions
269(2)
8.5 Stability of Transient Solution
271(4)
8.5.1 Contribution to Coefficient Matrix by Squeeze Flow Term
271(1)
8.5.2 Initial Value Problem
272(2)
8.5.3 Effect of Time Step Length Employed
274(1)
8.5.4 Effect of Convergence Accuracy Requirement
275(1)
8.6 Three-Dimensional Infinitely Long Line Contact-Mixed EHL Solution
275(5)
8.6.1 Background
275(1)
8.6.2 Model Description
276(1)
8.6.3 Sample Cases with Smooth Surfaces for Model Verification
277(2)
8.6.4 Sample Cases with Machined Surface Roughness
279(1)
8.7 Three-Dimensional Finite Roller Contact Mixed EHL Solution
280(3)
8.7.1 Introduction
280(1)
8.7.2 Roller Contact Geometry
280(1)
8.7.3 Typical Sample Cases
281(1)
8.7.4 Simulation of Lubrication Transition with Roughness
282(1)
8.8 Basic Mixed EHL Characteristics
283(8)
8.8.1 Background
283(2)
8.8.2 Limitations of Stochastic Mixed Lubrication Models
285(1)
8.8.3 Rough Surface Mixed EHL Model Validation
286(2)
8.8.4 Transition Characterized by A. Ratio
288(3)
8.8.5 Effect of Roughness Height on the Mixed EHL Behaviors
291(1)
8.9 Effect of Roughness Orientation on Film Thickness
291(5)
8.9.1 Background
291(2)
8.9.2 Case Study with Machined Roughness
293(1)
8.9.3 Case Study with Sinusoidal Wavy Surfaces
294(2)
8.10 Closure
296(3)
Chapter 9 Thermal Behaviors at Counterformal Contact Interfaces 299(46)
9.1 Introduction
299(2)
9.2 Flash Temperature Calculation
301(11)
9.2.1 Three Methods
301(1)
9.2.2 Point Heat Source Integration Method
302(5)
9.2.2.1 Influence Coefficient Algorithm
302(1)
9.2.2.2 Calculation of Influence Coefficients
303(2)
9.2.2.3 Three Ways to Carry Out Summation Operations
305(1)
9.2.2.4 Comparative Study via. Numerical Examples
305(2)
9.2.3 Simplified Approach for Cases at High Peclet Numbers
307(5)
9.3 Full TEHL Solution with Smooth Surfaces
312(14)
9.3.1 Line Contact TEHL Solutions
312(4)
9.3.1.1 Basic Equations for Line Contact TEHL Problems
313(2)
9.3.1.2 Brief Description of Numerical Method
315(1)
9.3.1.3 Typical Line Contact TEHL Results
316(1)
9.3.2 Point Contact TEHL Solution
316(10)
9.3.2.1 Basic TEHL Equations for Point Contact Problems
316(2)
9.3.2.2 Solution Domains and Initial/Boundary Conditions
318(1)
9.3.2.3 Numerical Solution Methods
318(4)
9.3.2.4 Sample Results and Discussions
322(4)
9.4 Full Solution of Mixed TEHL with Rough Surfaces
326(13)
9.4.1 Mixed TEHL Model Description
326(2)
9.4.2 Numerical Methods
328(3)
9.4.3 Model Validation
331(1)
9.4.4 Basic TEHL Characteristics
332(3)
9.4.5 TEHL with Surface Roughness
335(1)
9.4.6 Transition from Boundary and Mixed to Full-Film Lubrication
336(2)
9.4.7 Effect of Lubricant Non-Newtonian Behaviors
338(1)
9.5 Thermal Reduction of EHL Film Thickness
339(2)
9.6 Bulk Temperature
341(2)
9.7 Closure
343(2)
Chapter 10 Behaviors of Interfacial Friction 345(32)
10.1 Introduction
345(4)
10.1.1 Importance of the Topic
345(1)
10.1.2 Brief Review of Early Studies
345(1)
10.1.3 Friction in Full-Film EHL
346(1)
10.1.4 Friction in Mixed Lubrication
347(1)
10.1.5 Development of the Stribeck Curves
347(2)
10.2 Dry Contact Friction
349(5)
10.2.1 Basic Model
349(1)
10.2.2 Classic Laws of Friction
350(1)
10.2.3 Mechanisms of Friction
351(2)
10.2.4 Summary to Classic Friction Theories
353(1)
10.3 Boundary Lubrication Friction
354(5)
10.3.1 General Description
354(2)
10.3.2 Formation of Adsorption Film
356(1)
10.3.3 Effect of Boundary Additives on Lubrication Performance
356(3)
10.4 Rolling Friction
359(2)
10.5 Friction in Lubricated Conformal Contacts
361(1)
10.6 Friction in Lubricated Counterformal Contacts (EHL Friction)
362(3)
10.6.1 Background
362(1)
10.6.2 Basic Characteristics of EHL Friction
362(1)
10.6.3 Rheological Models
363(1)
10.6.4 Calculation of EHL Friction
364(1)
10.6.5 Sample Calculation Results
364(1)
10.7 Friction in Mixed Lubrication
365(5)
10.7.1 Basic Concept
365(1)
10.7.2 Mixed Lubrication Friction in Conformal Contacts
366(1)
10.7.3 Mixed Lubrication Friction in Counterformal Contacts
367(1)
10.7.4 Friction Reduction in Mixed Lubrication
368(2)
10.8 The Stribeck Curves
370(5)
10.8.1 Calculation of the Stribeck Curves
370(1)
10.8.2 Test Apparatus for the Stribeck Curve Measurements
371(1)
10.8.3 Sample Stribeck Curves Measured
371(1)
10.8.4 Comparison between Measured and Calculated Stribeck Curves
372(3)
10.9 More Friction Reduction Technologies
375(1)
10.10 Closure
375(2)
Chapter 11 Contact of Elastoplastic and Inhomogeneous Materials 377(38)
11.1 Introduction
377(1)
11.2 Fundamentals of Plasticity Theory
377(5)
11.2.1 Plasticity of Materials
377(2)
11.2.1.1 Yield Surface
377(1)
11.2.1.2 Yield Criteria
378(1)
11.2.2 Strain Hardening and Plastic Flow
379(3)
11.2.2.1 Yield Initiation and Strain Hardening
379(1)
11.2.2.2 Elastic-Perfectly Plastic (EPP) Behavior
380(1)
11.2.2.3 Isotropic Hardening Rule
380(1)
11.2.2.4 Kinematic Hardening Rule
380(1)
11.2.2.5 Combined Isotropic and Kinematic Hardening Rule
381(1)
11.2.2.6 Plastic Strain Increment
381(1)
11.3 Elastoplastic Contact Modeling
382(5)
11.3.1 FEM Modeling
382(1)
11.3.1.1 Elasto-Perfectly Plastic Contact Analysis through the FEM
382(1)
11.3.1.2 FEM Simulations Considering Strain Hardening
383(1)
11.3.2 Semi-Analytical Method
383(4)
11.3.2.1 General
383(1)
11.3.2.2 Description of the Approach by Jacq et al.
384(2)
11.3.2.3 Typical Examples for a Repeated Rolling/Sliding Contact
386(1)
11.4 Inclusion and Equivalent Inclusion Method (EIM)
387(4)
11.4.1 Inclusion and Eigenstrain
388(1)
11.4.2 Inhomogeneity and EIM
389(1)
11.4.3 Elastic Fields Caused by Eigenstrains
390(1)
11.5 Core Solutions to Eigenstrain-Induced Elastic Fields
391(9)
11.5.1 Background
391(1)
11.5.2 General Description
391(2)
11.5.3 Displacements
393(1)
11.5.4 Stress Field Outside C2
394(3)
11.5.5 Stress Field Inside SI
397(1)
11.5.6 Surface Displacement
397(1)
11.5.7 Uniform Unit Eigenstrain in a Cuboid and Related Influence Coefficients
398(2)
11.5.8 Discrete Correlation and Fast Fourier Transform (DCR-FFT)
400(1)
11.6 Numerical EIM by S. B. Liu et al. (2012) and Related Improvements
400(13)
11.6.1 General Formulation and Numerical Procedure for Contact Problems
401(1)
11.6.2 Traction Cancellation Method (TCM)
402(1)
11.6.3 Other Enhancement Methods
403(2)
11.6.4 Numerical Examples
405(8)
11.6.4.1 Stresses Due to a Single Inhomogeneity
405(2)
11.6.4.2 Surface Coating as an Inhomogeneity
407(1)
11.6.4.3 Composites with Distributed Particles
408(2)
11.6.4.4 Matrix Material Yield Strength/Hardness
410(1)
11.6.4.5 Double Inhomogeneities
411(2)
11.6.4.6 Rolling Contact Fatigue of Composite Materials
413(1)
11.7 Unified Contact Modeling and Advantages of the SAM
413(1)
11.7.1 Unified Framework for Contact Modeling
413(1)
11.7.2 SAM with Numerical EIM
414(1)
11.8 Closure
414(1)
Chapter 12 Plasto-Elastohydrodynamic Lubrication (PEHL) 415(36)
12.1 Introduction
415(2)
12.1.1 Importance of the Topic
415(1)
12.1.2 Brief Review of the Available Studies
416(1)
12.2 PEHL Formulation
417(3)
12.2.1 Problem Description
417(1)
12.2.2 Basic Mixed PEHL Equations
417(3)
12.3 Numerical Procedure for Solving the PEHL Problems
420(1)
12.4 Smooth Surface PEHL Simulations
420(6)
12.4.1 PEHL Model Validation
420(2)
12.4.2 Sample Cases
422(1)
12.4.3 Smooth Surface PEHL Under an Increasing Load
423(2)
12.4.4 Effect of Work-Hardening Property
425(1)
12.5 Rough Surface PEHL Simulations
426(12)
12.5.1 PEHL with a Single Surface Asperity
426(4)
12.5.1.1 Basic PEHL Phenomena with a Stationary Asperity
426(2)
12.5.1.2 Effects of Asperity Height and Radius
428(1)
12.5.1.3 PEHL Phenomena with a Moving Surface Asperity
429(1)
12.5.2 PEHL with a Single Surface Dent
430(3)
12.5.2.1 Basic PEHL Phenomena with a Stationary Dent
431(1)
12.5.2.2 Effects of Dent Depth and Radius
432(1)
12.5.2.3 PEHL Phenomena with a Moving Surface Dent
432(1)
12.5.3 PEHL with Sinusoidal Surfaces
433(4)
12.5.3.1 Basic PEHL Characteristics and Comparison with EHL Results
433(2)
12.5.3.2 Effect of Material-Hardening Property
435(1)
12.5.3.3 Effects of Rough Surface Geometric Parameters
435(1)
12.5.3.4 Effects of Operating Conditions
436(1)
12.5.4 PEHL with Real Machined Rough Surfaces
437(1)
12.6 PEHL in Line Contacts of Both Infinite and Finite Lengths
438(3)
12.6.1 Background
438(1)
12.6.2 Smooth Surface PEHL Solutions
438(2)
12.6.3 Rough Surface Mixed PEHL Solutions
440(1)
12.7 PEHL in a Rolling Contact
441(7)
12.7.1 Basic Model for PEHL in a Rolling Contact
441(2)
12.7.2 Numerical Procedure
443(1)
12.7.3 Results and Discussions
444(8)
12.7.3.1 PEHL Results for the First Rolling Cycle
444(1)
12.7.3.2 PEHL Results for the Second Rolling Cycle
445(1)
12.7.3.3 Ratcheting and Shakedown
445(1)
12.7.3.4 PEHL Phenomena in the First Rolling Cycle
445(1)
12.7.3.5 PEHL Phenomena in the Second Rolling Cycle
446(1)
12.7.3.6 PEHL Phenomena in the First Five Cycles
446(1)
12.7.3.7 Effect of Applied Load on the Shakedown or Ratcheting Behavior
447(1)
12.7.3.8 Effect of Material-Hardening Law on the Shakedown or Ratcheting Behavior
447(1)
12.8 Closure
448(3)
Chapter 13 EHL of Inhomogeneous Materials 451(30)
13.1 Introduction
451(1)
13.2 EHL with a Single Layer Coating
452(9)
13.2.1 Background
452(1)
13.2.2 Model for Point Contact EHL with Single-Layered Coating
453(1)
13.2.3 Model Verification
454(1)
13.2.4 Influences of Coating Properties on Point Contact EHL
455(2)
13.2.5 Influences of Speed, Load, and Lubricant Properties
457(2)
13.2.6 Curve-Fitting Formulae for Stiff Coating EHL
459(2)
13.3 EHL with a Multilayered Coating
461(10)
13.3.1 Background
461(1)
13.3.2 Theory and Model Description
462(3)
13.3.2.1 Equations for Lubrication
462(1)
13.3.2.2 Equations for Surface Displacements and Subsurface Stresses
462(2)
13.3.2.3 Numerical Solution Procedure
464(1)
13.3.3 Typical Sample Results
465(6)
13.3.3.1 EHL with a Bi-Layered Coating
465(2)
13.3.3.2 EHL with a Multilayered Substrate
467(2)
13.3.3.3 EHL with a Functionally Graded Coating
469(2)
13.3.4 Remarks
471(1)
13.4 EHL with Gveneral Inhomogeneities
471(9)
13.4.1 Background
471(1)
13.4.2 Theory and Model Description
472(2)
13.4.2.1 Equations for Point Contact EHL
472(1)
13.4.2.2 Equations for Surface Displacement Calculation
472(2)
13.4.2.3 Numerical Procedure
474(1)
13.4.3 Typical Sample Results and Discussions
474(5)
13.4.3.1 Selected Cases and Computational Mesh
474(1)
13.4.3.2 A Single Inhomogeneity
475(2)
13.4.3.3 Multiple Inhomogeneities
477(1)
13.4.3.4 Functionally Graded Coatings
478(1)
13.4.4 Computational Efficiency
479(1)
13.4.5 Remarks
479(1)
13.5 Closure
480(1)
Chapter 14 Application Topics 481(48)
14.1 Introduction
481(1)
14.2 Mixed EHL in Gears
481(11)
14.2.1 Background
481(2)
14.2.2 Mixed EHL in Spur and Helical Gears
483(5)
14.2.2.1 Gear Geometry and Kinematics
483(1)
14.2.2.2 Simplified Load Distribution
484(1)
14.2.2.3 Three-Dimensional Line Contact Mixed EHL Simulation Model
485(1)
14.2.2.4 Results for a Sample Gear Set in Mixed EHL
486(1)
14.2.2.5 Gear Tooth Contact Friction
487(1)
14.2.2.6 Flash and Bulk Temperatures in Gears
488(1)
14.2.3 Mixed EHL in Spiral Bevel and Hypoid Gears
488(4)
14.2.3.1 Background
488(1)
14.2.3.2 Gearing Geometry and Kinematics
489(1)
14.2.3.3 Modified Mixed EHL Model
490(1)
14.2.3.4 Interfacial Friction and Flash Temperature Calculations
490(1)
14.2.3.5 Sample Results of Calculation
490(1)
14.2.3.6 Summary
491(1)
14.3 Pitting Life Prediction for Gears
492(6)
14.3.1 Problem Description
492(2)
14.3.2 Pitting Life Prediction Model
494(1)
14.3.3 Gear Pitting Life Prediction Procedure
495(2)
14.3.4 Life Prediction Results and Their Comparisons with Testing Data
497(1)
14.3.5 Effect of Surface Finish on Predicted Pitting Life
497(1)
14.4 Fatigue Life in Rolling-Sliding Contacts
498(6)
14.4.1 Problem Description
498(1)
14.4.2 Asperity Stress Cycle Counting
498(1)
14.4.3 Life Prediction Procedure
499(1)
14.4.4 Influence of Relative Sliding on Peak Pressure
500(2)
14.4.5 Subsurface Stress Variation Due to Sliding
502(1)
14.4.6 Influence of Sliding on Fatigue Life
502(2)
14.5 Simulation of Sliding Wear in Mixed Lubrication
504(6)
14.5.1 Problem Description
504(1)
14.5.2 Brief Review of Available Wear Models
505(1)
14.5.3 Wear Simulation Procedure
506(1)
14.5.4 A Numerical Example
507(2)
14.5.5 Phases of Wear
509(1)
14.5.6 Wear Coefficient Calibration
510(1)
14.6 Surface Design through Virtual Texturing
510(8)
14.6.1 Importance of Surface Texture Design and Optimization
510(2)
14.6.2 Virtual Texturing and Its Procedure
512(1)
14.6.3 An Application Example
513(5)
14.6.3.1 Problem Description
513(1)
14.6.3.2 Determinations of Dimple/Groove Depth, Size, and Density
514(1)
14.6.3.3 Texture Distribution Pattern Selection
514(1)
14.6.3.4 Bottom Shapes of the Dimples and Grooves
514(1)
14.6.3.5 Basic Results of Comparisons
514(2)
14.6.3.6 Practical Concerns
516(2)
14.6.4 Summary
518(1)
14.7 EHL with Emulsion Lubricants
518(9)
14.7.1 Background
518(2)
14.7.2 Testing Apparatus
520(1)
14.7.3 Emulsion Lubricants Tested
521(1)
14.7.4 Oil Pool Formation and Disappearance
522(1)
14.7.5 Results of Measured Film Thickness
523(2)
14.7.6 Friction Measurements
525(1)
14.7.7 Summary
526(1)
14.8 Closure
527(2)
Chapter 15 Multifield Interfacial Issues and Generalized Contact Modeling 529(32)
15.1 Introduction
529(1)
15.1.1 Background
529(1)
15.1.2 Brief Review of Related Multifield Studies
530(1)
15.2 Coupled Mechanical-Electrical-Magnetic-Chemical-Thermal (MEMCT) Theory for Material Systems
530(9)
15.2.1 Fundamental Theories and the MEMCT Framework
531(6)
15.2.1.1 Multifield Coupling and Fundamental Theories
531(3)
15.2.1.2 Initial and Boundary Conditions
534(1)
15.2.1.3 Generalized MEMCT Constitutive Equations
534(1)
15.2.1.4 Evolution Equations
535(2)
15.2.2 Generalized MEMCT Theory
537(2)
15.2.2.1 A Set of Generalized Solutions
537(1)
15.2.2.2 Strategy
538(1)
15.3 Generalized Contact Model
539(5)
15.3.1 Contact Model Considerations
539(1)
15.3.2 Linearized Constitutive Equations and Generalized Boundary Conditions
540(1)
15.3.3 Generalized Contact and Interfacial Conditions
541(3)
15.3.3.1 Generalized Gap, Load, and Surface Flux
541(1)
15.3.3.2 Generalized Contact and Interfacial Conditions for Single-Field Cases
541(2)
15.3.3.3 Generalized Contact and Interfacial Conditions in Coupled Fields
543(1)
15.3.3.4 Contact Conditions
543(1)
15.3.3.5 Interfacial Conditions
543(1)
15.3.3.6 Other Boundary Conditions
544(1)
15.4 Examples of Contact Subjected to Coupled Fields
544(17)
15.4.1 Sliding Contact Heat Conduction in Homogeneous Materials
544(5)
15.4.1.1 Problem Description
544(3)
15.4.1.2 Solution Scheme
547(1)
15.4.1.3 Different Modeling Considerations
547(1)
15.4.1.4 Stress and Temperature Affected by Sliding Velocity
548(1)
15.4.2 Contact Heat Conduction with Surface Heat Convection
549(1)
15.4.3 Contact Heat Conduction in an Inhomogeneous Half-Space
550(4)
15.4.3.1 Problem Description
550(1)
15.4.3.2 Analytical Core Solution
551(1)
15.4.3.3 Contact and Interfacial Conditions
551(1)
15.4.3.4 Numerical Scheme
552(1)
15.4.3.5 Disturbed Temperature and Heat Flux due to Inhomogeneity
552(1)
15.4.3.6 Effect of Inhomogeneity Size and Location on Disturbed Temperature
553(1)
15.4.3.7 Effect of Inhomogeneity Distance
553(1)
15.4.4 Frictional Contact Between Two Multiferroic Materials
554(5)
15.4.4.1 Problem Description
554(2)
15.4.4.2 Solution Procedure
556(1)
15.4.4.3 Indentation of a Smooth MEE Surface
557(1)
15.4.4.4 Indentation of a Rough MEE Surface
558(1)
15.4.4.5 Parameter Sensitivity
558(1)
15.5 Closure
559(2)
Appendix A: Basic Expressions in Linear Elasticity 561(2)
Appendix B: Fourier Series, Fourier Transform, Convolution, and Correlation 563(6)
Appendix C: Solutions of the FRFs for Multilayered Materials Under Normal and Shear Loadings 569(6)
Appendix D: Reference Source Code in FORTRAN for Discrete Convolution and Fast Fourier Transform (DC-FFT) 575(4)
Appendix E: Basic Equations and Their Discretization Schemes for Numerical Solution of Mixed EHL 579(8)
Appendix F: Potential Functions, Derivatives, and Equations Used in
Chapter 11
587(6)
Appendix G: Stresses and Surface Displacement Caused by a Cuboidal Inclusion with Uniformly Distributed Eigenstrain 593(4)
Appendix H: Material Property Parameters and Coefficients for the MEMCT Theory 597(6)
Appendix I: Frequency Response Functions for Surface-Source Induced Temperature and Thermal Elasticity 603(4)
References 607
Index 62
DAVID INFIELD, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

LEON FRERIS, Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Leicestershire, UK