Atnaujinkite slapukų nuostatas

El. knyga: Research in Computational Molecular Biology: 23rd Annual International Conference, RECOMB 2019, Washington, DC, USA, May 5-8, 2019, Proceedings

Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 11467
  • Išleidimo metai: 15-Apr-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030170837
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 11467
  • Išleidimo metai: 15-Apr-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030170837

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the 23rd Annual Conference on Research in Computational Molecular Biology, RECOMB 2019, held in Washington, DC, USA, in April 2019.

The 17 extended and 20 short abstracts presented were carefully reviewed and selected from 175 submissions. The short abstracts are included in the back matter of the volume. The papers report on original research in all areas of computational molecular biology and bioinformatics.

An Efficient, Scalable and Exact Representation of High-Dimensional
Color Information Enabled Via de Bruijn Graph Search.- Identifying Clinical
Terms in Free-Text Notes Using Ontology-Guided Machine Learning.-  ModHMM: A
Modular Supra-Bayesian Genome Segmentation Method.-  Learning Robust
Multi-Label Sample Specific Distances for Identifying HIV-1 Drug
Resistance.-  MethCP: Differentially Methylated Region Detection with Change
Point Models.-  On the Complexity of Sequence to Graph Alignment.-
 Minimization-Aware Recursive K* (MARK*): A Novel, Provable Algorithm that
Accelerates Ensemble-based Protein Design and Provably Approximates the
Energy Landscape.- Sparse Binary Relation Representations for Genome Graph
Annotation.- How Many Subpopulations is Too Many? Exponential Lower Bounds
for Inferring Population Histories.- Efficient Construction of a Complete
Index for Pan-Genomics Read Alignment.- Tumor Copy Number Deconvolution
Integrating Bulk and Single-CellSequencing Data.- OMGS: Optical Map-based
Genome Scaffolding.- Fast Approximation of Frequent k-mers and Applications
to Metagenomics.-  De Novo Clustering of Long-Read Transcriptome Data Using a
Greedy, Quality-Value Based Algorithm.- A Sticky Multinomial Mixture Model of
Strand-Coordinated Mutational Processes in Cancer.- Disentangled
Representations of Cellular Identity.-  RENET: A Deep Learning Approach for
Extracting Gene-Disease Associations from Literature.- APPLES: Fast Distance
Based Phylogenetic Placement.- De Novo Peptide Sequencing Reveals a Vast
Cyclopeptidome in Human Gut and Other environments.- Biological Sequence
Modeling with Convolutional Kernel Networks.- Dynamic Pseudo-Time Warping of
Complex Single-Cell Trajectories.- netNMF-sc: A Network Regularization
Algorithm for Dimensionality Reduction and Imputation of Single-Cell
Expression Data.-  Geometric Sketching of Single-Cell Data Preserves
Transcriptional Structure.- Sketching Algorithms for GenomicData Analysis and
Querying in a Secure Enclave.-  Mitigating Data Scarcity in Protein Binding
Prediction Using Meta-Learning.- Efficient  Estimation and Applications of
Cross-Validated Genetic Predictions.- Inferring Tumor Evolution from
Longitudinal Samples.- Scalable Multi-Component Linear Mixed Models with
Application to SNP Heritability Estimation.- A Note on Computing Interval
Overlap Statistics.-  Distinguishing Biological from Technical Sources of
Variation by Leveraging Multiple Methylation Datasets.- GRep: Gene Set
Representation via Gaussian Embedding.-  Accurate Sub-Population Detection
and Mapping Across Single Cell Experiments with PopCorn.- Fast Estimation of
Genetic Correlation for Biobank-Scale Data.- Distance-Based Protein Folding
Powered by Deep Learning.- Comparing 3D Genome Organization in Multiple
Species Using Phylo-HMRF.- Towards a Post-Clustering Test for Didderential
Expression.- AdaFDR: a Fast, Powerful and Covariate-Adaptive Approach for
Multiple Hypothesis Testing.