List of boxes |
|
xvi | |
Preface |
|
xviii | |
Acknowledgements |
|
xxii | |
Section 1 Planning your experiment |
|
|
|
3 | (17) |
|
|
3 | (3) |
|
|
4 | (1) |
|
|
4 | (2) |
|
1.2 Data, items, and observations |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (3) |
|
1.4.1 Representative samples |
|
|
8 | (1) |
|
1.4.2 How do youobtain a-representative sample? |
|
|
8 | (2) |
|
1.5 Population parameters and sample statistics |
|
|
10 | (1) |
|
1.5.1 Mathematical notation for populations and samples |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.7 Variation and variables |
|
|
12 | (4) |
|
|
12 | (1) |
|
1.7.2 Variables that are designed to be part of your experiment |
|
|
12 | (1) |
|
1.7.3 Confounding variation: confounding variables |
|
|
13 | (1) |
|
1.7.4 Confounding variation: sampling error |
|
|
14 | (1) |
|
1.7.5 Minimizing the effect of confounding variation |
|
|
15 | (1) |
|
|
16 | (4) |
|
|
16 | (1) |
|
1.8.2 Information-theoretic models |
|
|
17 | (3) |
|
2 Planning your experiment |
|
|
20 | (25) |
|
2.1 Evaluating published research |
|
|
21 | (3) |
|
2.1.1 What are the aim and objective(s)? |
|
|
22 | (1) |
|
2.1.2 Strengths of the experimental design |
|
|
22 | (1) |
|
2.1.3 Weaknesses of the experimental design |
|
|
22 | (2) |
|
|
24 | (16) |
|
2.2.1 Identification of a research topic |
|
|
25 | (2) |
|
|
27 | (1) |
|
2.2.3 What is/are the statistical population(s)? Will I sample from the population(s)? |
|
|
28 | (1) |
|
2.2.4 Which variables am I investigating? |
|
|
29 | (1) |
|
2.2.5 Are there any potential sources of confounding variation? |
|
|
30 | (2) |
|
2.2.6 Will I need replicates? |
|
|
32 | (2) |
|
2.2.7 Will I need any controls? |
|
|
34 | (1) |
|
2.2.8 How will I analyse my data? |
|
|
35 | (2) |
|
2.2.9 Do I need to take action to ensure that I comply with UK law? |
|
|
37 | (1) |
|
2.2.10 Are there any causes of possible bias? Have I made any assumptions? |
|
|
38 | (1) |
|
2.2.11 Will I repeat the investigation? |
|
|
39 | (1) |
|
2.2.12 Back to the beginning |
|
|
39 | (1) |
|
|
40 | (5) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (3) |
|
3 Questionnaires, focus groups, and interviews |
|
|
45 | (12) |
|
3.1 What is a questionnaire, interview, or focus group? |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
3.2 Closed and open questions |
|
|
46 | (6) |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
3.5 Sample sizes and data analysis |
|
|
53 | (4) |
|
|
54 | (1) |
|
|
55 | (1) |
|
3.5.3 Achieving the required sample size |
|
|
55 | (2) |
|
4 Research, the law, and you |
|
|
57 | (40) |
|
|
58 | (3) |
|
|
58 | (1) |
|
|
58 | (3) |
|
|
61 | (1) |
|
4.3 Intellectual property rights |
|
|
61 | (1) |
|
|
62 | (10) |
|
4.4.1 Hazard identification and rating |
|
|
63 | (2) |
|
|
65 | (1) |
|
4.4.3 Probability of harm |
|
|
66 | (1) |
|
4.4.4 Minimizing the risk |
|
|
67 | (4) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (11) |
|
|
72 | (3) |
|
|
75 | (1) |
|
4.5.3 Plants, animals, and other organisms |
|
|
76 | (3) |
|
4.5.4 Protection in special areas |
|
|
79 | (3) |
|
4.5.5 Movement, import, export, and control |
|
|
82 | (1) |
|
4.5.6 Permits and licences |
|
|
83 | (1) |
|
|
83 | (3) |
|
4.6.1 Protection of Animals Act 1911 |
|
|
84 | (1) |
|
4.6.2 Animals (Scientific Procedures) Act 1986 (as amended) |
|
|
85 | (1) |
|
4.6.3 Animal Welfare Act (2006) and Animal Health and Welfare (Scotland) Act 2006 |
|
|
86 | (1) |
|
4.7 Genetically modified organisms (GMO) |
|
|
86 | (1) |
|
|
86 | (5) |
|
|
87 | (2) |
|
4.8.2 Special cases: children and vulnerable people |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.8.4 Anonymity, confidentiality, information storage, and dissemination |
|
|
90 | (1) |
|
|
91 | (6) |
Section 2 Handling Our data |
|
|
5 What to do with raw data |
|
|
97 | (37) |
|
|
98 | (2) |
|
5.2 Distributions of data |
|
|
100 | (6) |
|
5.2.1 Normal distribution |
|
|
100 | (2) |
|
5.2.2 Binomial distribution |
|
|
102 | (1) |
|
5.2.3 Poisson distribution |
|
|
103 | (2) |
|
5.2.4 Exponential distribution |
|
|
105 | (1) |
|
|
106 | (2) |
|
5.4 Estimates of the central tendency |
|
|
108 | (7) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (4) |
|
|
113 | (2) |
|
5.5 Estimates of variation |
|
|
115 | (6) |
|
|
116 | (1) |
|
5.5.2 I nterquartile range and percentiles |
|
|
116 | (1) |
|
5.5.3 Variance and standard deviation |
|
|
116 | (5) |
|
5.6 Coefficient of variation |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
122 | (4) |
|
5.8.1 What are parametric data and why do we need them? |
|
|
123 | (1) |
|
5.8.2 How to confirm that data are parametric |
|
|
123 | (1) |
|
5.8.3 Using the shape of the distribution to confirm that your data are parametric |
|
|
123 | (2) |
|
5.8.4 Using statistical tests to confirm that your data are parametric |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
127 | (7) |
|
5.10.1 How to choose a suitable transformation |
|
|
128 | (1) |
|
5.10.2 How to carry out the transformation |
|
|
128 | (1) |
|
5.10.3 Did the transformation work, and what to do if it didn't |
|
|
128 | (2) |
|
5.10.4 How to report analyses that have used transformed data |
|
|
130 | (4) |
|
6 An introduction to hypothesis testing |
|
|
134 | (26) |
|
6.1 What is hypothesis testing? |
|
|
135 | (11) |
|
6.1.1 Extreme rare values in a population |
|
|
135 | (4) |
|
6.1.2 What are null and alternate hypotheses? |
|
|
139 | (1) |
|
6.1.3 Testing the hypotheses |
|
|
140 | (2) |
|
6.1.4 Choosing the correct critical value |
|
|
142 | (1) |
|
6.1.5 Choosing a distribution |
|
|
142 | (1) |
|
6.1.6 Choosing the p value |
|
|
142 | (3) |
|
6.1.7 Overview of hypothesis testing |
|
|
145 | (1) |
|
6.2 How to choose a sample size |
|
|
146 | (3) |
|
6.2.1 A representative sample |
|
|
146 | (1) |
|
6.2.2 Meeting the criteria of statistical tests |
|
|
146 | (1) |
|
6.2.3 Maximum sample sizes |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
6.2.6 Legal and practical constraints |
|
|
149 | (1) |
|
6.3 Select and correctly phrase the hypotheses to be tested |
|
|
149 | (4) |
|
6.3.1 Types of hypothesis |
|
|
149 | (2) |
|
6.3.2 General and specific hypotheses |
|
|
151 | (1) |
|
6.3.3 How to write hypotheses |
|
|
151 | (2) |
|
6.4 Using tables of critical values |
|
|
153 | (4) |
|
|
153 | (1) |
|
|
154 | (2) |
|
6.4.3 More than two criteria |
|
|
156 | (1) |
|
|
156 | (1) |
|
6.5 What does this mean in real terms? |
|
|
157 | (3) |
|
7 Which statistical test should I choose? |
|
|
160 | (23) |
|
7.1 Designing an experiment and analysing your data |
|
|
161 | (13) |
|
7.1.1 Key to determine the correct statistical test |
|
|
162 | (6) |
|
7.1.2 Supporting explanations and examples |
|
|
168 | (6) |
|
7.2 Experimental design and statistics |
|
|
174 | (2) |
|
7.2.1 General and specific hypothesis |
|
|
175 | (1) |
|
|
175 | (1) |
|
7.2.3 Replication and sample sizes |
|
|
175 | (1) |
|
7.2.4 Matched data or repeated measures |
|
|
176 | (1) |
|
7.2.5 Confounding variables |
|
|
176 | (1) |
|
7.3 The critical reader of statistics and experimental design |
|
|
176 | (7) |
|
7.3.1 The title and introduction |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
179 | (4) |
|
8 Hypothesis testing: Do my data fit an expected ratio? |
|
|
183 | (17) |
|
8.1 Which ratios can we fit? |
|
|
184 | (1) |
|
|
185 | (1) |
|
8.3 Chi-squared goodness-of-fit test: one sample |
|
|
185 | (4) |
|
8.3.1 Key trends and experimental design |
|
|
186 | (1) |
|
|
187 | (1) |
|
8.3.3 The general calculation |
|
|
187 | (2) |
|
8.4 How to check whether your data have a normal distribution using the chi-squared goodness-of-fit test |
|
|
189 | (4) |
|
8.4.1 Key trends and experififental design |
|
|
190 | (1) |
|
|
190 | (1) |
|
8.4.3 The general calculation |
|
|
190 | (3) |
|
8.5 Replication in a goodness-of-fit test |
|
|
193 | (7) |
|
8.5.1 Key trends and experimental design |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (5) |
|
9 Hypothesis testing: Associations and relationships |
|
|
200 | (50) |
|
9.1 Associations and relationships |
|
|
201 | (1) |
|
9.2 Modelling the association |
|
|
201 | (1) |
|
9.3 Chi-squared test for association |
|
|
202 | (5) |
|
9.3.1 Key trends and experimental design |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (2) |
|
9.4 The problem with small numbers and limited designs |
|
|
207 | (3) |
|
9.4.1 Your sample size is small |
|
|
208 | (1) |
|
9.4.2 Your expected values are less than five |
|
|
208 | (2) |
|
9.4.3 Chi-squared test for a 2 x 2 contingency table |
|
|
210 | (1) |
|
|
210 | (4) |
|
9.6 Spearman's rank correlation |
|
|
214 | (3) |
|
9.6.1 Key trends and experimental design |
|
|
214 | (1) |
|
|
214 | (2) |
|
|
216 | (1) |
|
9.7 Pearson's product moment correlation |
|
|
217 | (4) |
|
9.7.1 Key trends and experimental design |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (3) |
|
9.8 Coefficient of determination |
|
|
221 | (1) |
|
|
221 | (2) |
|
9.10 Model I: simple linear regression: only one y for each x |
|
|
223 | (7) |
|
9.10.1 Key trends and experimental design |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (4) |
|
9.11 Model I: linear regression: more than one y for each value of x, with equal replicates |
|
|
230 | (8) |
|
9.11.1 Key trends and experimental design |
|
|
232 | (1) |
|
|
232 | (2) |
|
|
234 | (4) |
|
9.12 Model II: principal axis regression |
|
|
238 | (4) |
|
9.12.1 Key trends and experimental design |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (2) |
|
9.13 Model II: ranged principal axis regression |
|
|
242 | (8) |
|
9.13.1 Key trends and experimental design |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
244 | (6) |
|
10 Hypothesis testing: Do my samples come from the same population? Parametric data |
|
|
250 | (75) |
|
10.1 Two sample z-test for unmatched data |
|
|
252 | (6) |
|
10.1.1 Key trends and experimental design |
|
|
254 | (1) |
|
|
254 | (3) |
|
|
257 | (1) |
|
10.2 Two-sample Student's t-test for unmatched data |
|
|
258 | (4) |
|
10.2.1 Key trends and experimental design |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
260 | (2) |
|
10.3 Two-sample unequal variance t-test for unmatched data |
|
|
262 | (3) |
|
10.3.1 Key trends and experimental design |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (2) |
|
10.4 Two-sample z- and t-tests for matched data |
|
|
265 | (4) |
|
10.4.1 Key trends and experimental design |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (2) |
|
|
269 | (3) |
|
10.5.1 Key trends and experimental design |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
10.6 Introduction to parametric ANOVAs |
|
|
272 | (2) |
|
10.7 One-way parametric ANOVA with equal numbers of replicates |
|
|
274 | (5) |
|
10.7.1 Key trends and experimental design |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (2) |
|
10.8 Tukey's test following a parametric one-way ANOVA with equal replicates |
|
|
279 | (4) |
|
10.8.1 Key trends and experimental design |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
10.8.4 Reporting your findings |
|
|
282 | (1) |
|
10.9 One-way parametric ANOVA with unequal replicates |
|
|
283 | (3) |
|
10.9.1 Key trends and experimental design |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
10.10 Tukey-Kramer test following a parametric one-way ANOVA with unequal replicates |
|
|
286 | (3) |
|
10.10.1 Key trends and experimental design |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
286 | (3) |
|
10.10.4 Reporting your findings |
|
|
289 | (1) |
|
10.11 ANOVAs for more than one treatment variable |
|
|
289 | (5) |
|
10.11.1 Randomized orthogonal designs |
|
|
289 | (1) |
|
10.11.2 Confounding variables as a treatment variable |
|
|
290 | (1) |
|
10.11.3 More than one confounding variable: a Latin square |
|
|
290 | (1) |
|
10.11.4 Linear confound ing,yariables |
|
|
291 | (1) |
|
10.11.5 Repeated measures as a second treatment variable |
|
|
292 | (1) |
|
10.11.6 Fixed and nested models |
|
|
292 | (1) |
|
|
293 | (1) |
|
10.12 Two-way parametric ANOVA with equal replicates |
|
|
294 | (6) |
|
10.12.1 Key trends and experimental design |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (4) |
|
10.13 Tukey's test following a parametric two-way ANOVA with equal replicates |
|
|
300 | (2) |
|
10.13.1 Key trends and experimental design |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
10.14 Two-way parametric ANOVA with unequal replicates |
|
|
302 | (2) |
|
10.14.1 Key trends and experimental design |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
10.15 Two-way parametric ANOVA with no replicates |
|
|
304 | (6) |
|
10.15.1 Key trends and experimental design |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (3) |
|
10.16 Two-way nested parametric ANOVA with equal replicates |
|
|
310 | (5) |
|
10.16.1 Key trends and experimental design |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (3) |
|
10.16.4 Tukey's test for nested parametric ANOVAs |
|
|
315 | (1) |
|
10.17 Factorial three-way parametric ANOVA with no replicates |
|
|
315 | (10) |
|
10.17.1 Key trends and experimental design |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
318 | (5) |
|
10.17.4 Tukey's test and a three-way parametric ANOVA |
|
|
323 | (2) |
|
11 Hypothesis testing: Do my samples come from the same population? Non-parametric data |
|
|
325 | (44) |
|
|
327 | (6) |
|
11.1.1 Key trends and experimental design |
|
|
328 | (1) |
|
|
328 | (1) |
|
|
329 | (4) |
|
11.2 Wilcoxon's signed ranks test for matched pairs test |
|
|
333 | (5) |
|
11.2.1 Key trends and experimental design |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (3) |
|
11.3 One-way non-parametric ANOVA (Kruskal-Wall is test) |
|
|
338 | (5) |
|
11.3.1 Key trends and experimental design |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (2) |
|
11.4 Post hoc test following a non-parametric one-way ANOVA |
|
|
343 | (4) |
|
11.4.1 Key trends and experimental design |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
345 | (2) |
|
11.5 Two-way non-parametric ANOVA |
|
|
347 | (9) |
|
11.5.1 Key trends and experimental design |
|
|
348 | (1) |
|
|
349 | (1) |
|
|
349 | (7) |
|
11.6 Post hoc test following a two-way non-parametric ANOVA |
|
|
356 | (7) |
|
11.6.1 Key trends and experimental design |
|
|
357 | (1) |
|
|
358 | (5) |
|
|
363 | (1) |
|
11.7 Scheirer-Ray-Hare test |
|
|
363 | (6) |
|
11.7.1 Key trends and experimental design |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
364 | (5) |
Section 3 Reporting your results |
|
|
12 Reporting your research |
|
|
369 | (44) |
|
12.1 Writing a research paper or report |
|
|
370 | (30) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
373 | (4) |
|
|
377 | (3) |
|
|
380 | (1) |
|
|
381 | (3) |
|
|
384 | (6) |
|
12.1.11 Results: statistics |
|
|
390 | (2) |
|
|
392 | (1) |
|
12.1.13 References: Harvard system |
|
|
393 | (6) |
|
|
399 | (1) |
|
12.1.15 Your approach to writing a report |
|
|
399 | (1) |
|
|
400 | (6) |
|
|
400 | (4) |
|
12.2.2 Poster construction |
|
|
404 | (1) |
|
12.2.3 Principles of layout on a'poster |
|
|
404 | (1) |
|
12.2.4 Laying out a poster |
|
|
405 | (1) |
|
12.2.5 Additional material |
|
|
406 | (1) |
|
|
406 | (7) |
|
12.3.1 The role of the presenter |
|
|
406 | (2) |
|
12.3.2 Visual slide presentation |
|
|
408 | (2) |
|
|
410 | (1) |
|
|
410 | (3) |
Appendix A How to choose a research project |
|
413 | (4) |
Appendix B Maths and statistics |
|
417 | (12) |
Appendix C Quick reference guide for choosing a statistical test |
|
429 | (3) |
Appendix D Tables of critical values for statistical tests |
|
432 | (18) |
Glossary |
|
450 | (6) |
References |
|
456 | (1) |
Index |
|
457 | |