Atnaujinkite slapukų nuostatas

El. knyga: Reservoir Engineering Models: Analytical and Numerical Approaches

  • Formatas: 320 pages
  • Išleidimo metai: 21-Nov-2018
  • Leidėjas: McGraw-Hill Education
  • Kalba: eng
  • ISBN-13: 9781259588587
Kitos knygos pagal šią temą:
  • Formatas: 320 pages
  • Išleidimo metai: 21-Nov-2018
  • Leidėjas: McGraw-Hill Education
  • Kalba: eng
  • ISBN-13: 9781259588587
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.


Develop, build, and deploy accurate mathematical models for hydrocarbon reservoirs

This practical resource discusses the construction of reservoir models and the implementation of these models in both forward and inverse modes using numerical, analytical, empirical, and artificial intelligence techniques. Written by a pair of experts in the field, Reservoir Engineering Models: Analytical and Numerical Approaches clearly explains the complicated building processes of mathematical models and lays out cutting-edge solution protocols. Advanced chapters teach the assembly of complex physical processes using principles of physics, thermodynamics and mathematics. You will learn to optimize decision-making processes applicable to the management of field development and extraction activities. 
 
Coverage includes:

•An introduction to reservoir engineering models
•Mathematics of reservoir engineering
•Reservoir engineering fundamentals
•Hydrocarbon fluid models and thermodynamics
•Reservoir engineering transport equations
•Analytical and numerical reservoir engineering solutions
•Proxy and hybrid models in reservoir engineering

Preface ix
Acknowledgments xi
Nomenclature xiii
1 Introduction
1(8)
1.1 Need for Reservoir Modeling
1(1)
1.2 Purpose of Reservoir Modeling
2(1)
1.3 Classical Reservoir Engineering Protocols versus Numerical Modeling
2(1)
1.4 Basic Components of a Reservoir Model
3(3)
1.4.1 Fundamental Equations of the Mathematical Model
3(2)
1.4.2 The Numerical Model
5(1)
1.4.3 The Computer Model
5(1)
1.5 Why Model the Reservoir?
6(1)
1.5.1 Newly Discovered Fields
6(1)
1.5.2 Mature Fields
6(1)
1.5.3 Project Screening
6(1)
1.5.4 Modeling as a Dynamic Process
6(1)
1.6 Summary
7(2)
Reference
7(2)
2 Mathematics of Reservoir Engineering
9(26)
2.1 The Generalized Transport Equation (GTE)
10(5)
2.1.1 The Lagrangian View
10(2)
2.1.2 Divergence Theorem and Differential Operators
12(2)
2.1.3 Reynolds Transport Theorem, Euler Formulations, and Generalized Transport Equation
14(1)
2.2 General Transport Equation Applied to Porous Media
15(2)
2.3 Review of Equations of Flow in Porous Media
17(18)
2.3.1 Single-Phase Flow Equations
17(6)
2.3.2 Extension of Flow Equations to Multiphase Flow
23(2)
2.3.3 Extension of Flow Equations to Compositional Flow
25(3)
2.3.4 Coordinate Transformations
28(7)
3 Reservoir Engineering Fundamentals
35(32)
3.1 The Porous Medium as a Continuum
35(1)
3.2 The Fundamental Equations
35(1)
3.3 Fluid and Rock Compressibility Concepts
36(6)
3.3.1 Liquids and Fluid Compressibility
37(2)
3.3.2 Gases and Real Gas Law
39(2)
3.3.3 Rock Compressibility and Total Compressibility
41(1)
3.4 Porosity and Porosity Distribution
42(3)
3.5 Permeability and Permeability Distributions
45(2)
3.5.1 Characteristics of Darcy's Equation
45(2)
3.6 The Flow Potential Concept
47(2)
3.7 Permeability as a Symmetric Tensor of a Second Rank
49(3)
3.8 Wettability and Interfacial Tension
52(1)
3.9 The Relative Permeability Concept
53(6)
3.10 Capillary Pressure in Porous Media
59(3)
3.11 Skin Factor and Wellbore Flow
62(5)
References
65(2)
4 Hydrocarbon Fluid Models and Thermodynamics
67(30)
4.1 Reservoir Fluid Modeling Choices
67(3)
4.2 Compositional Fluid Modeling: The Nc-Component Fluid
70(6)
4.2.1 Thermodynamic Equilibrium and Ki Ratios
73(1)
4.2.2 Compositional Modeling and Flash Calculations
74(2)
4.3 Black-Oil Fluid Model and its PVT Properties
76(21)
4.3.1 Compositional Calculations in Black-Oil Models
81(5)
4.3.2 Black-Oil Fluid Thermodynamics and Flash Calculations
86(6)
4.3.3 Black-Oil PVT Data from Compositional and Density Information
92(4)
References
96(1)
5 Reservoir Engineering Transport Equations
97(38)
5.1 Mass Conservation in Compositional Reservoir Engineering Models
97(9)
5.1.1 Overall (across-all-phases) Compositional Equations
103(3)
5.2 Incompressible Fluid (e.g., water) Flow Problem: Single-Phase (Np = 1), Single-Component (Nc = 1)
106(2)
5.3 Slightly-Compressible Fluid (e.g., oil flow): Single-Phase (Np = 1), Single-Component (Nc = 1)
108(3)
5.4 Compressible Fluid (e.g., dry gas) Flow Problem: Single-Phase (Np = 1), Single-Component (Nc = 1)
111(3)
5.5 Immiscible Liquid/Liquid (e.g., oil/water) Flow Problem: Two-Phase (Np = 2), Two-Component (Nc = 2)
114(2)
5.6 Standard Black-Oil Formulation for Oil/Gas How: Two-Phase (Np = 2), Two-Component (Nc = 2)
116(2)
5.7 Extended Black-Oil Formulation for Oil/Gas/Water Flow: Three-Phase (Np = 3), Three-Component (Nc = 3)
118(17)
References
134(1)
6 Analytical Reservoir Engineering Solutions
135(106)
6.1 Analytical Reservoir Solutions and Systems Analysis
135(1)
6.2 Classical Formulations and Hydraulic Diffusivity Concept
136(2)
6.3 Analytical Models in Well Test Analysis and Purpose of Well Testing
138(2)
6.4 Derivation of Classical 1-D Radial Cylindrical Flow Equation
140(3)
6.5 Liquid Flow Analytical Formulation
143(2)
6.6 Compressible Flow Analytical Formulations
145(7)
6.6.1 Compressible Flow Equations: Pressure Approach
147(1)
6.6.2 Compressible Flow Equations: p2-Approach
148(1)
6.6.3 Compressible Flow Equations: Real Gas Potential Approach
149(3)
6.7 Dimensionless Groups and Dimensionless Form of the Governing Equations
152(7)
6.7.1 Derivation of Dimensionless Groups
153(4)
6.7.2 Dimensionless Form of the Well Test Model
157(2)
6.8 Reservoir Boundary Idealizations in Classical Analytical Solutions
159(2)
6.9 Analytical Solutions of the Dimensionless Formulation
161(12)
6.9.1 Infinite-Acting Analytical Solution
161(6)
6.9.2 Finite Reservoir Analytical Solutions
167(6)
6.10 Important Well-Test Analysis Concepts
173(6)
6.11 Deviations from Idealized Behavior
179(27)
6.11.1 Variable Rates and Superposition Principle
179(7)
6.11.2 Noncircular Drainage Areas: Method of Images
186(15)
6.11.3 Multiphase Flow Effects
201(1)
6.11.4 Skin and Inertial-Turbulent Effects
202(1)
6.11.5 Skin Due to Restricted Entry
203(1)
6.11.6 Wellbore Storage Effects
204(2)
6.12 Basic Pressure Transient Data Analysis (PTA) Techniques
206(22)
6.12.1 Pressure Buildup (PBU) Analysis
207(11)
6.12.2 Pressure Drawdown (PDD) Analysis
218(10)
6.13 Conformal Mapping Techniques
228(13)
References
239(2)
7 Numerical Reservoir Engineering Solutions
241(60)
7.1 Taylor Series and Numerical Schemes
242(2)
7.2 Finite-Volume Method Representations of Flow Equations
244(1)
7.3 FVM Representations of Single-Phase How Equations
245(18)
7.3.1 Single-Phase Incompressible Flow
245(7)
7.3.2 Single-Phase Slightly Compressible Flow
252(7)
7.3.3 Single-Phase Compressible Flow
259(4)
7.4 Newton-Raphson and Single-Phase Numerical Solutions
263(7)
7.5 FVM Representations of Multiphase Flow: Black-Oil Equations
270(8)
7.5.1 Immiscible Liquid/Liquid (Oil/Water) Flow
270(4)
7.5.2 Extended and Standard Black-Oil Formulations
274(4)
7.6 Solution of Black-Oil Multiphase Numerical Equations
278(9)
7.6.1 Implicit Pressure, Explicit Saturation (IMPES) Method
279(3)
7.6.2 Generalized Newton-Raphson Procedure
282(5)
7.7 FVM Representations of Multiphase Flow: Compositional Equations
287(5)
7.8 Solution of Compositional Multiphase Numerical Equations
292(9)
7.8.1 Pressure-Overall I-th Composition Solutions
292(4)
7.8.2 Pressure-Overall I-th Mass Solutions
296(3)
References
299(2)
8 Proxy and Hybrid Models in Reservoir Engineering
301(36)
8.1 Use of Artificial Intelligence-Based Models in the Upstream Petroleum Industry
301(4)
8.2 ANN-Based Toolboxes for Decision Making in Reservoir Engineering
305(18)
8.2.1 Enhanced Oil Recovery Screening Toolbox
306(1)
8.2.2 Well Test Analysis Toolbox
306(5)
8.2.3 General Reservoir and Production Engineering Analysis Toolbox
311(12)
8.3 Overview of Mathematical Manipulations in ANNs
323(14)
References
335(2)
Index 337