Atnaujinkite slapukų nuostatas

Resonance: Applications In Physical Science [Minkštas viršelis]

(University Of York, Uk)
  • Formatas: Paperback / softback, 260 pages
  • Išleidimo metai: 06-Feb-2015
  • Leidėjas: Imperial College Press
  • ISBN-10: 1783265396
  • ISBN-13: 9781783265398
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 260 pages
  • Išleidimo metai: 06-Feb-2015
  • Leidėjas: Imperial College Press
  • ISBN-10: 1783265396
  • ISBN-13: 9781783265398
Kitos knygos pagal šią temą:
This book explores a large number of resonance effects that occur both in everyday life and in scientific contexts. It is a topic that provides a cross-link between many branches of science and shows how a single scientific principle can manifest itself in many, apparently disparate, ways.Resonance covers fields as diverse as civil engineering in relation to the safety of bridges, the quality of sound from musical instruments, the behaviour of electrical circuits, lasers, the orbits of solar-system bodies, the scattering of X-rays from atoms and the exploration of the structures of molecules, atoms and nuclei.The essential mathematics included should be accessible to any science undergraduate, no matter the discipline of their study. Problems and solutions are provided for every chapter to help reinforce understanding of the material.
Introduction xi
Chapter 1 Simple Harmonic Motion, Damping and Resonance
1(16)
1.1 Simple Harmonic Motion
1(6)
1.1.1 A mass on a vertical spring
1(1)
1.1.2 The simple pendulum
1(4)
1.1.3 The energy of simple harmonic motion
5(2)
1.2 Damped Simple Harmonic Motion
7(4)
1.2.1 Light damping
8(1)
1.2.2 Heavy damping
9(1)
1.2.3 Critical damping
10(1)
1.3 Forced Vibration and Resonance
11(6)
Problems 1
14(3)
Chapter 2 Resonance in Everyday Life
17(18)
2.1 A Girl on a Swing
17(1)
2.2 The Opera Singer and the Wine Glass
18(2)
2.3 Bridges
20(3)
2.3.1 The Broughton Suspension Bridge
21(1)
2.3.2 The Millennium Bridge, London
22(1)
2.4 Washboard Roads
23(2)
2.5 Buildings and Earthquakes
25(2)
2.6 Resonance and Musical Instruments
27(8)
2.6.1 Resonance of air in a pipe
27(4)
2.6.2 Resonance in a string
31(1)
2.6.3 The violin
32(3)
Chapter 3 Electrical Circuits and Resonance
35(14)
3.1 Direct-Current Circuits
35(1)
3.2 Expressing an Alternating Potential Difference
36(1)
3.3 Complex Impedances
37(4)
3.3.1 Inductors
37(2)
3.3.2 Capacitors
39(2)
3.4 A. Series LCR Resonance Circuit
41(2)
3.5 A Parallel LCR Resonance Circuit
43(6)
Problems 3
47(2)
Chapter 4 Resonance in the Solar System
49(32)
4.1 Kirkwood Gaps
49(5)
4.2 Saturn's Rings
54(4)
4.3 Volcanoes on the Satellite Io
58(7)
4.3.1 Elastic hysteresis and Q values
59(1)
4.3.2 Elliptical orbits
60(2)
4.3.3 The generation of energy in Io by tidal stressing
62(3)
4.1 Commensurabilities of Planetary and Satellite Orbits
65(16)
4.4.1 Planetary commensurabilities
65(5)
4.4.2 The commensurabilities of the Galilean satellites
70(2)
4.4.3 The commensurabilities of some of Saturn's satellites
72(2)
4.4.4 The Trojan asteroids
74(4)
Problems 4
78(3)
Chapter 5 Nuclear Magnetic Resonance
81(24)
5.1 A Brief Review of the Structure of Atoms
81(1)
5.2 Intrinsic Spins and Magnetic Moments
82(5)
5.2.1 Orientation of nuclei in a magnetic field
84(3)
5.3 Magnetic Resonance Imaging (MRI)
87(15)
5.3.1 Larmor precession
88(3)
5.3.2 The basic physics of the MRI process
91(4)
5.3.3 Fourier transforms
95(2)
5.3.4 The MRI procedure
97(5)
5.4 Other Applications of NMR
102(3)
Problems 5
102(3)
Chapter 6 Electron Spin Resonance
105(18)
6.1 The Electronic Structure of Molecules and Free Radicals
105(6)
6.1.1 The electronic structure of atoms
105(3)
6.1.2 The electronic structure of molecules
108(2)
6.1.3 The electronic structure of free radicals
110(1)
6.2 The Basic Theory of Electron Spin Resonance
111(3)
6.3 The Form and Use of an ESR Spectrometer
114(1)
6.4 ESR Spectra
115(8)
6.4.1 ESR spectra for a single neighbouring nucleus with nuclear spin
116(3)
6.4.2 Many nuclei in equivalent positions
119(1)
6.4.3 Two sets of non-equivalent nuclei
120(2)
Problems 6
122(1)
Chapter 7 Resonance with Electromagnetic Radiation
123(22)
7.1 Fraunhofer Lines
123(3)
7.1.1 Energy levels in atoms
123(1)
7.1.2 Atomic spectra
124(2)
7.1.3 Formation of Fraunhofer lines
126(1)
7.2 Lasers
126(5)
7.2.1 Spontaneous and stimulated emission
127(3)
7.2.2 A simple laser system and uses of lasers
130(1)
7.3 Radar
131(5)
7.3.1 The klystron amplifier
133(2)
7.3.2 The cavity magnetron
135(1)
7.4 The Anomalous Scattering of X-rays
136(9)
7.4.1 Scattering from a free electron
137(1)
7.4.2 Scattering from a bound electron
138(5)
Problems 7
143(2)
Chapter 8 Nuclear Physics, Radiation and Particle Physics
145(24)
8.1 The Beginning of Nuclear Physics
145(2)
8.2 The Cockcroft--Walton Experiment
147(2)
8.3 The Cyclotron
149(6)
8.3.1 Maintaining resonance
153(1)
8.3.2 Overcoming special relativity effects
154(1)
8.4 Linear Particle Accelerators
155(2)
8.5 Synchrotrons
157(3)
8.6 Particles and Particle Colliders
160(9)
8.6.1 The neutrino
161(1)
8.6.2 Leptons
161(1)
8.6.3 Quarks and sub-atomic particles
162(2)
8.6.4 Particle colliders
164(2)
Problems 8
166(3)
Chapter 9 The Mossbauer Effect
169(18)
9.1 The Basis of the Mossbauer Effect
169(1)
9.2 Natural Line-Widths
169(1)
9.3 Doppler Broadening
170(2)
9.4 The Effect of Recoil
172(2)
9.5 Nuclear Emission of γ-rays
174(1)
9.6 Factors Affecting γ-Ray Emission
175(2)
9.6.1 Natural line-width for γ-rays
175(1)
9.6.2 Doppler line broadening for γ-rays
176(1)
9.6.3 The recoil frequency shift for γ-rays
176(1)
9.7 Mossbauer Spectroscopy
177(2)
9.7.1 Experimental equipment
178(1)
9.8 Spectral Features
179(4)
9.8.1 Isomer shift
180(1)
9.8.2 Quadrupole splitting
180(2)
9.8.3 Magnetic splitting
182(1)
9.9 Information from Mossbauer Spectroscopy
183(4)
Problem 9
184(3)
Appendix I The Binomial Theorem and Approximations 187(4)
Appendix II A Program for Simulating Kirkwood Gap Formation 191(6)
Appendix III A Program for Finding the Orbits of Trojan Asteroids 197(8)
Physical Constants and Useful Data 205(2)
Solutions to Examples and Problems 207(32)
Index 239