Atnaujinkite slapukų nuostatas

El. knyga: Ricci Flow and Geometrization of 3-Manifolds

  • Formatas: 150 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 03-Sep-2010
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416485
Kitos knygos pagal šią temą:
  • Formatas: 150 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 03-Sep-2010
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416485
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincare Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences. The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of the same material. (ULECT/53)
Preface ix
Part 1 Overview
1(26)
Lecture 1
3(1)
Geometric manifolds
3(1)
Thurston manifolds
4(1)
The theorems
5(2)
Lecture 2
7(1)
Basics of Riemannian geometry
7(1)
Basics of Ricci flow
8(2)
Canonical Neighborhoods
10(3)
Lecture 3
13(1)
More on Canonical Neighborhoods
13(1)
Surgery on Ricci flow
14(2)
Topological effects of surgery
16(1)
Lecture 4
17(1)
More structure (geometric and analytic) of Canonical Neighborhoods
17(1)
Finite-time extinction
18(3)
Lecture 5
21(1)
Geometric limits
21(1)
Hyperbolic limits
22(1)
The thin part
23(1)
Alexandrov spaces
23(4)
Summary of Part 1
25(2)
Part 2 Non-collapsing Results for Ricci Flows
27(30)
Lecture 6
29(1)
Geometric limits in the context of Ricci flow
29(2)
Sketch of proof of the convergence theorem
31(2)
Lecture 7
33(1)
Non-collapsing: the statement
33(1)
The L-function and L-geodesics
34(3)
Lecture 8
37(1)
The L-exponential map
37(1)
Jacobi fields and the differential of L-exp
38(3)
Lecture 9
41(1)
Harnack's inequality
41(1)
Relation of H(X) to L-geodesics
42(3)
Lecture 10
45(1)
More derivative estimates for L
45(2)
Hessian inequality
47(2)
Lecture 11
49(1)
Monotonicity
49(1)
Example of Rn
50(1)
Non-collapsing of reduced volume
51(2)
Lecture 12
53(1)
Non-collapsing
53(1)
Completion of proof
53(4)
Part 3 k-solutions
57(32)
Lecture 13
59(1)
Curvature pinching in dimension 3
59(1)
Shrinking solitons
59(4)
Lecture 14
63(1)
Study of the length functions in a k-solution
63(1)
Extensions of the inequalities
64(1)
Convergence as τ→∞
64(3)
Lecture 15
67(1)
Proof of the existence of an asymptotic gradient shrinking soliton
67(3)
Enhanced gradient shrinking solitons
70(3)
Lecture 16
73(1)
Toponogov's splitting theorem
73(1)
Classification of asymptotic gradient shrinking solitons
73(4)
Lecture 17
77(1)
Asymptotic volume ratio and asymptotic curvature
77(1)
Asymptotic curvature of a k-solution
77(1)
Asymptotic volume ratio for a k-solution
78(3)
Lecture 18
81(1)
Compactness of the space of k-solutions
81(1)
Proof of the compactness theorem for k-solutions
82(3)
Lecture 19
85(1)
Review of compactness of 3-dimensional k-solutions
85(1)
Qualitative properties of k-solutions
86(1)
Geometry of 3-dimensional k-solutions
87(2)
Part 4 The Canonical Neighborhood Theorem
89(16)
Lecture 20
91(1)
Blow-up limits
91(1)
Canonical neighborhood theorem
92(5)
Lecture 21
97(1)
Completion of the proof of the canonical neighborhood theorem
97(1)
Step 2 of proof
97(1)
Step 3 of proof
97(4)
Lecture 22
101(1)
Review of proof
101(1)
Additive distance inequality
101(4)
Part 5 Ricci Flow with Surgery
105(20)
Lecture 23
107(1)
What happens at Tmax?
107(1)
ε-horns
108(1)
Structure of Ω
108(1)
Topological description of surgery
109(2)
Lecture 24
111(1)
Geometric surgery on a Ricci flow
111(1)
Surgery (refined)
112(1)
The standard solution
112(3)
Lecture 25
115(1)
Existence of Ricci flow with surgery defined for all time: the statement and outline of proof
115(2)
Noncollapsing
117(4)
Lecture 26
121(1)
ε-canonical neighborhood threshold parameter
121(2)
Discreteness of the surgery times
123(2)
Part 6 Behavior as t→∞
125(24)
Lecture 27
127(1)
Recap of results of previous parts
127(1)
Normalized volume and scalar curvature at infinity
127(4)
Lecture 28
131(1)
Hyperbolic limits
131(1)
Analytic results for large time
132(3)
Lecture 29
135(1)
Permanence of the hyperbolic pieces
135(1)
Hyperbolic towers
136(3)
Lecture 30
139(1)
Incompressibility of the boundary tori
139(1)
Structure of Mt, thin(w)
139(2)
Lecture 31
141(1)
The relative version of the Geometrization Conjecture
141(1)
Proof that the theorem implies Geometrization Conjecture
142(1)
Study of Mt, thin(w)
142(3)
Lecture 32
145(1)
The structure of sufficiently volume collapsed 3-manifolds
145(1)
Gromov-Hausdorff limits
145(1)
Alexandrov spaces
145(2)
Structure of the ρ-1 (Xn) B Xn, ρ(Xn)) when the limit has dimension 1
147(1)
Structure of the ρ-1 (Xn) B (Xn, ρ(Xn)) when the limit has dimension 2
147(1)
The global structure
148(1)
Bibliography 149