Atnaujinkite slapukų nuostatas

El. knyga: Riemannian Geometry During the Second Half of the Twentieth Century

  • Formatas: 182 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 02-Jan-2015
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470422158
Kitos knygos pagal šią temą:
  • Formatas: 182 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 02-Jan-2015
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470422158
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

During its first hundred years, Riemannian geometry enjoyed steady, but undistinguished growth as a field of mathematics. In the last fifty years of the twentieth century, however, it has exploded with activity. Berger marks the start of this period with Rauch's pioneering paper of 1951, which contains the first real pinching theorem and an amazing leap in the depth of the connection between geometry and topology. Since then, the field has become so rich that it is almost impossible for the uninitiated to find their way through it. Textbooks on the subject invariably must choose a particular approach, thus narrowing the path.In this book, Berger provides a truly remarkable survey of the main developments in Riemannian geometry in the last fifty years. One of the most powerful features of Riemannian manifolds is that they have invariants of (at least) three different kinds. There are the geometric invariants: topology, the metric, various notions of curvature, and relationships among these. There are analytic invariants: eigenvalues of the Laplacian, wave equations, Schrodinger equations. There are the invariants that come from Hamiltonian mechanics: geodesic flow, ergodic properties, periodic geodesics.Finally, there are important results relating different types of invariants. To keep the size of this survey manageable, Berger focuses on five areas of Riemannian geometry: Curvature and topology; the construction of and the classification of space forms; distinguished metrics, especially Einstein metrics; eigenvalues and eigenfunctions of the Laplacian; the study of periodic geodesics and the geodesic flow. Other topics are treated in less detail in a separate section.While Berger's survey is not intended for the complete beginner (one should already be familiar with notions of curvature and geodesics), he provides a detailed map to the major developments of Riemannian geometry from 1950 to 1999. Important threads are highlighted, with brief descriptions of the results that make up that thread. This supremely scholarly account is remarkable for its careful citations and voluminous bibliography. If you wish to learn about the results that have defined Riemannian geometry in the last half century, start with this book.

Recenzijos

This is quite an amazing book. Bulletin of the London Mathematical Society

Additional bibliography Riemannian geometry up to 1950 Comments on the
main topics I, II, III, IV, V under consideration Curvature and topology The
geometrical hierarchy of Riemann manifolds: Space forms The set of Riemannian
structures on a given compact manifold: Is there a best metric? The spectrum,
the eigenfunctions Periodic geodesics, the geodesic flow Some other
Riemannian geometric topics of interest Bibliography Subject and notation
index Name index.