Atnaujinkite slapukų nuostatas

Rings with Polynomial Identities and Finite Dimensional Representations of Algebras [Minkštas viršelis]

  • Formatas: Paperback / softback, 630 pages, aukštis x plotis: 254x178 mm, weight: 1340 g
  • Serija: Colloquium Publications
  • Išleidimo metai: 30-Dec-2020
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470451743
  • ISBN-13: 9781470451745
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 630 pages, aukštis x plotis: 254x178 mm, weight: 1340 g
  • Serija: Colloquium Publications
  • Išleidimo metai: 30-Dec-2020
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470451743
  • ISBN-13: 9781470451745
Kitos knygos pagal šią temą:
A polynomial identity for an algebra (or a ring) $A$ is a polynomial in noncommutative variables that vanishes under any evaluation in $A$. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley-Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Preface ix
The plan of the book x
Differences with other books xi
Introduction 1(4)
0.1 Two classical problems
1(4)
Part 1 Foundations
5(184)
Chapter 1 Noncommutative algebra
7(30)
1.1 Noncommutative algebras
7(11)
1.2 Semisimple modules
18(1)
1.3 Finite-dimensional algebras
19(9)
1.4 Noetherian rings
28(2)
1.5 Localizations
30(2)
1.6 Commutative algebra
32(5)
Chapter 2 Universal algebra
37(38)
2.1 Categories and functors
37(9)
2.2 Varieties of algebras
46(10)
2.3 Algebras with trace
56(5)
2.4 The method of generic elements
61(5)
2.5 Generalized identities
66(3)
2.6 Matrices and the standard identity
69(6)
Chapter 3 Symmetric functions and matrix invariants
75(34)
3.1 Polarization
75(5)
3.2 Symmetric functions
80(6)
3.3 Matrix functions and invariants
86(12)
3.4 The universal map into matrices
98(11)
Chapter 4 Polynomial maps
109(16)
4.1 Polynomial maps
109(6)
4.2 The Schur algebra of the free algebra
115(10)
Chapter 5 Azumaya algebras and irreducible representations
125(40)
5.1 Irreducible representations
125(9)
5.2 Faithfully flat descent
134(5)
5.3 Projective modules
139(7)
5.4 Separable and Azumaya algebras
146(19)
Chapter 6 Tensor symmetry
165(24)
6.1 Schur--Weyl duality
165(4)
6.2 The symmetric group
169(3)
6.3 The linear group
172(7)
6.4 Characters
179(10)
Part 2 Combinatorial aspects of polynomial identities
189(74)
Chapter 7 Growth
191(22)
7.1 Exponential bounds
191(4)
7.2 The A B theorem
195(3)
7.3 Cocharacters of a PI algebra
198(4)
7.4 Proper polynomials
202(3)
7.5 Cocharacters are supported on a (k) hook
205(5)
7.6 Application: A theorem of Kemer
210(3)
Chapter 8 Shirshov's Height Theorem
213(18)
8.1 Shirshov's height theorem
213(8)
8.2 Some applications of Shirshov's height theorem
221(2)
8.3 Gel'fand--Kirillov dimension
223(8)
Chapter 9 2 × 2 matrices
231(32)
9.1 2 × 2 matrices
231(15)
9.2 Invariant ideals
246(8)
9.3 The structure of generic 2 × 2 matrices
254(9)
Part 3 The structure theorems
263(140)
Chapter 10 Matrix identities
265(22)
10.1 Basic identities
265(5)
10.2 Central polynomials
270(8)
10.3 The theorem of M. Artin on Azumaya algebras
278(4)
10.4 Universal splitting
282(5)
Chapter 11 Structure theorems
287(26)
11.1 Nil ideals
287(4)
11.2 Semisimple and prime PI algebras
291(6)
11.3 Generic matrices
297(3)
11.4 Affine algebras
300(2)
11.5 Representable algebras
302(11)
Chapter 12 Invariants and trace identities
313(32)
12.1 Invariants of matrices
313(10)
12.2 Representations of algebras with trace
323(8)
12.3 The alternating central polynomials
331(14)
Chapter 13 Involutions and matrices
345(14)
13.1 Matrices with involutions
345(3)
13.2 Symplectic and orthogonal case
348(11)
Chapter 14 A geometric approach
359(34)
14.1 Geometric invariant theory
359(9)
14.2 The universal embedding into matrices
368(1)
14.3 Semisimple representations of CH algebras
369(9)
14.4 Geometry of generic matrices
378(6)
14.5 Using Cayley--Hamilton algebras
384(3)
14.6 The unramified locus and restriction maps
387(6)
Chapter 15 Spectrum and dimension
393(10)
15.1 Krull dimension
393(4)
15.2 A theorem of Schelter
397(6)
Part 4 The relatively free algebras
403(194)
Chapter 16 The nilpotent radical
405(24)
16.1 The Razmyslov--Braun--Kemer theorem
405(8)
16.2 The theorem of Lewin
413(4)
16.3 T-ideals of identities of block-triangular matrices
417(3)
16.4 The theorem of Bergman and Lewin
420(9)
Chapter 17 Finite-dimensional and affine PI algebras
429(36)
17.1 Strategy
429(2)
17.2 Kemer's theory
431(16)
17.3 The trace algebra
447(7)
17.4 The representability theorem, Theorem 17.1.1
454(3)
17.5 The abstract Cayley--Hamilton theorem
457(8)
Chapter 18 The relatively free algebras
465(22)
18.1 Rationality and a canonical filtration
465(9)
18.2 Complements of commutative algebra and invariant theory
474(7)
18.3 Applications to PI algebras
481(2)
18.4 Model algebras
483(4)
Chapter 19 Identities and superalgebras
487(42)
19.1 The Grassmann algebra
487(6)
19.2 Superalgebras
493(8)
19.3 Graded identities
501(3)
19.4 The role of the Grassmann algebra
504(8)
19.5 Finitely generated PI superalgebras
512(8)
19.6 The trace algebra
520(4)
19.7 The representability theorem, Theorem 19.7.4
524(3)
19.8 Grassmann envelope and finite-dimensional superalgebras
527(2)
Chapter 20 The Specht problem
529(12)
20.1 Standard and Capelli
529(2)
20.2 Solution of the Specht's problem
531(2)
20.3 Verbally prime T-ideals
533(8)
Chapter 21 The Pi-exponent
541(14)
21.1 The asymptotic formula
541(4)
21.2 The exponent of an associative PI algebra
545(4)
21.3 Growth of central polynomials
549(1)
21.4 Beyond associative algebras
550(3)
21.5 Beyond the PI exponent
553(2)
Chapter 22 Codimension growth for matrices
555(18)
22.1 Codimension growth for matrices
555(5)
22.2 The codimension estimate for matrices
560(13)
Chapter 23 Codimension growth for algebras satisfying a Capelli identity
573(24)
23.1 PI algebras satisfying a Capelli identity
573(20)
23.2 Special finite-dimensional algebras
593(4)
Appendix A The Golod--Shafarevich counterexamples 597(8)
Bibliography 605(18)
Index 623(6)
Index of Symbols 629
Eli Aljadeff, Technion-Israel Institute of Technology, Haifa, Israel

Antonio Giambruno, Universita di Palermo, Italy

Claudio Procesi, Universita di Roma ""La Sapienza"", Italy

Amitai Regev, The Weitzmann Institute of Science, Rehovot, Israel