Preface |
|
ix | |
The plan of the book |
|
x | |
Differences with other books |
|
xi | |
Introduction |
|
1 | (4) |
|
0.1 Two classical problems |
|
|
1 | (4) |
|
|
5 | (184) |
|
Chapter 1 Noncommutative algebra |
|
|
7 | (30) |
|
1.1 Noncommutative algebras |
|
|
7 | (11) |
|
|
18 | (1) |
|
1.3 Finite-dimensional algebras |
|
|
19 | (9) |
|
|
28 | (2) |
|
|
30 | (2) |
|
|
32 | (5) |
|
Chapter 2 Universal algebra |
|
|
37 | (38) |
|
2.1 Categories and functors |
|
|
37 | (9) |
|
2.2 Varieties of algebras |
|
|
46 | (10) |
|
|
56 | (5) |
|
2.4 The method of generic elements |
|
|
61 | (5) |
|
2.5 Generalized identities |
|
|
66 | (3) |
|
2.6 Matrices and the standard identity |
|
|
69 | (6) |
|
Chapter 3 Symmetric functions and matrix invariants |
|
|
75 | (34) |
|
|
75 | (5) |
|
|
80 | (6) |
|
3.3 Matrix functions and invariants |
|
|
86 | (12) |
|
3.4 The universal map into matrices |
|
|
98 | (11) |
|
Chapter 4 Polynomial maps |
|
|
109 | (16) |
|
|
109 | (6) |
|
4.2 The Schur algebra of the free algebra |
|
|
115 | (10) |
|
Chapter 5 Azumaya algebras and irreducible representations |
|
|
125 | (40) |
|
5.1 Irreducible representations |
|
|
125 | (9) |
|
5.2 Faithfully flat descent |
|
|
134 | (5) |
|
|
139 | (7) |
|
5.4 Separable and Azumaya algebras |
|
|
146 | (19) |
|
Chapter 6 Tensor symmetry |
|
|
165 | (24) |
|
|
165 | (4) |
|
|
169 | (3) |
|
|
172 | (7) |
|
|
179 | (10) |
|
Part 2 Combinatorial aspects of polynomial identities |
|
|
189 | (74) |
|
|
191 | (22) |
|
|
191 | (4) |
|
|
195 | (3) |
|
7.3 Cocharacters of a PI algebra |
|
|
198 | (4) |
|
|
202 | (3) |
|
7.5 Cocharacters are supported on a (k) hook |
|
|
205 | (5) |
|
7.6 Application: A theorem of Kemer |
|
|
210 | (3) |
|
Chapter 8 Shirshov's Height Theorem |
|
|
213 | (18) |
|
8.1 Shirshov's height theorem |
|
|
213 | (8) |
|
8.2 Some applications of Shirshov's height theorem |
|
|
221 | (2) |
|
8.3 Gel'fand--Kirillov dimension |
|
|
223 | (8) |
|
|
231 | (32) |
|
|
231 | (15) |
|
|
246 | (8) |
|
9.3 The structure of generic 2 × 2 matrices |
|
|
254 | (9) |
|
Part 3 The structure theorems |
|
|
263 | (140) |
|
Chapter 10 Matrix identities |
|
|
265 | (22) |
|
|
265 | (5) |
|
|
270 | (8) |
|
10.3 The theorem of M. Artin on Azumaya algebras |
|
|
278 | (4) |
|
|
282 | (5) |
|
Chapter 11 Structure theorems |
|
|
287 | (26) |
|
|
287 | (4) |
|
11.2 Semisimple and prime PI algebras |
|
|
291 | (6) |
|
|
297 | (3) |
|
|
300 | (2) |
|
11.5 Representable algebras |
|
|
302 | (11) |
|
Chapter 12 Invariants and trace identities |
|
|
313 | (32) |
|
12.1 Invariants of matrices |
|
|
313 | (10) |
|
12.2 Representations of algebras with trace |
|
|
323 | (8) |
|
12.3 The alternating central polynomials |
|
|
331 | (14) |
|
Chapter 13 Involutions and matrices |
|
|
345 | (14) |
|
13.1 Matrices with involutions |
|
|
345 | (3) |
|
13.2 Symplectic and orthogonal case |
|
|
348 | (11) |
|
Chapter 14 A geometric approach |
|
|
359 | (34) |
|
14.1 Geometric invariant theory |
|
|
359 | (9) |
|
14.2 The universal embedding into matrices |
|
|
368 | (1) |
|
14.3 Semisimple representations of CH algebras |
|
|
369 | (9) |
|
14.4 Geometry of generic matrices |
|
|
378 | (6) |
|
14.5 Using Cayley--Hamilton algebras |
|
|
384 | (3) |
|
14.6 The unramified locus and restriction maps |
|
|
387 | (6) |
|
Chapter 15 Spectrum and dimension |
|
|
393 | (10) |
|
|
393 | (4) |
|
15.2 A theorem of Schelter |
|
|
397 | (6) |
|
Part 4 The relatively free algebras |
|
|
403 | (194) |
|
Chapter 16 The nilpotent radical |
|
|
405 | (24) |
|
16.1 The Razmyslov--Braun--Kemer theorem |
|
|
405 | (8) |
|
16.2 The theorem of Lewin |
|
|
413 | (4) |
|
16.3 T-ideals of identities of block-triangular matrices |
|
|
417 | (3) |
|
16.4 The theorem of Bergman and Lewin |
|
|
420 | (9) |
|
Chapter 17 Finite-dimensional and affine PI algebras |
|
|
429 | (36) |
|
|
429 | (2) |
|
|
431 | (16) |
|
|
447 | (7) |
|
17.4 The representability theorem, Theorem 17.1.1 |
|
|
454 | (3) |
|
17.5 The abstract Cayley--Hamilton theorem |
|
|
457 | (8) |
|
Chapter 18 The relatively free algebras |
|
|
465 | (22) |
|
18.1 Rationality and a canonical filtration |
|
|
465 | (9) |
|
18.2 Complements of commutative algebra and invariant theory |
|
|
474 | (7) |
|
18.3 Applications to PI algebras |
|
|
481 | (2) |
|
|
483 | (4) |
|
Chapter 19 Identities and superalgebras |
|
|
487 | (42) |
|
19.1 The Grassmann algebra |
|
|
487 | (6) |
|
|
493 | (8) |
|
|
501 | (3) |
|
19.4 The role of the Grassmann algebra |
|
|
504 | (8) |
|
19.5 Finitely generated PI superalgebras |
|
|
512 | (8) |
|
|
520 | (4) |
|
19.7 The representability theorem, Theorem 19.7.4 |
|
|
524 | (3) |
|
19.8 Grassmann envelope and finite-dimensional superalgebras |
|
|
527 | (2) |
|
Chapter 20 The Specht problem |
|
|
529 | (12) |
|
20.1 Standard and Capelli |
|
|
529 | (2) |
|
20.2 Solution of the Specht's problem |
|
|
531 | (2) |
|
20.3 Verbally prime T-ideals |
|
|
533 | (8) |
|
Chapter 21 The Pi-exponent |
|
|
541 | (14) |
|
21.1 The asymptotic formula |
|
|
541 | (4) |
|
21.2 The exponent of an associative PI algebra |
|
|
545 | (4) |
|
21.3 Growth of central polynomials |
|
|
549 | (1) |
|
21.4 Beyond associative algebras |
|
|
550 | (3) |
|
21.5 Beyond the PI exponent |
|
|
553 | (2) |
|
Chapter 22 Codimension growth for matrices |
|
|
555 | (18) |
|
22.1 Codimension growth for matrices |
|
|
555 | (5) |
|
22.2 The codimension estimate for matrices |
|
|
560 | (13) |
|
Chapter 23 Codimension growth for algebras satisfying a Capelli identity |
|
|
573 | (24) |
|
23.1 PI algebras satisfying a Capelli identity |
|
|
573 | (20) |
|
23.2 Special finite-dimensional algebras |
|
|
593 | (4) |
Appendix A The Golod--Shafarevich counterexamples |
|
597 | (8) |
Bibliography |
|
605 | (18) |
Index |
|
623 | (6) |
Index of Symbols |
|
629 | |