Atnaujinkite slapukų nuostatas

El. knyga: Robust Range Image Registration Using Genetic Algorithms And The Surface Interpenetration Measure

(Univ Federal Do Parana, Brazil), (Rensselaer Polytechnic Inst, Usa), (Univ Federal Do Parana, Brazil)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book addresses the range image registration problem for automatic 3D model construction. The focus is on obtaining highly precise alignments between different view pairs of the same object to avoid 3D model distortions; in contrast to most prior work, the view pairs may exhibit relatively little overlap and need not be prealigned. To this end, a novel effective evaluation metric for registration, the Surface Interpenetration Measure (SIM) is defined. This measure quantifies the interleaving of two surfaces as their alignment is refined, putting the qualitative evaluation of splotchiness, often used in reference to renderings of the aligned surfaces, onto a solid mathematical footing. The SIM is shown to be superior to mean squared error (i.e. more sensitive to fine scale changes) in controlling the final stages of the alignment process.The authors go on to combine the SIM with Genetic Algorithms (GAs) to develop a robust approach for range image registration. The results confirm that this technique achieves precise surface registration with no need for prealignment, as opposed to methods based on the Iterative Closest Point (ICP) algorithm, the most popular to date. Thorough experimental results including an extensive comparative study are presented and enhanced GA-based approaches to improve the registration still further are proposed. The authors also develop a global multiview registration technique using the GA-based approach. The results show considerable promise in terms of accuracy for 3D modeling.

Recenzijos

"This book is very useful for the specialists in the fields of image processing, machine perception and three-dimensional model construction. Beginners in the field can also profit from the clear description of the problems and their solutions." Zentralblatt MATH

Preface vii
1. Introduction 1(8)
1.1 Range images
3(4)
1.2 Applications
7(1)
1.3 Book outline
8(1)
2. Range Image Registration 9(10)
2.1 Definition
9(1)
2.2 Registration approaches
10(4)
2.3 Outlier rejection rules
14(2)
2.4 Registration quality measures
16(2)
2.5 Summary
18(1)
3. Surface Interpenetration Measure (SIM) 19(26)
3.1 Definition
19(6)
3.2 Obtaining precise alignments
25(10)
3.3 Parameters and constraints on the SIM
35(6)
3.4 Stability against noise
41(2)
3.5 Discussion
43(2)
4. Range Image Registration using Genetic Algorithms 45(44)
4.1 Concepts
45(4)
4.2 Chromosome encoding
49(1)
4.3 Robust fitness function
50(3)
4.4 GA parameter settings
53(10)
4.5 Enhanced GAs
63(12)
4.6 Results for other range image databases
75(3)
4.7 GAs and SA
78(5)
4.8 Low-overlap registration
83(2)
4.9 Evaluation time
85(2)
4.10 Discussion
87(2)
5. Robust Range Registration by Combining GAs and the SIM 89(16)
5.1 SIM as fitness function
89(2)
5.2 Experimental results
91(7)
5.3 Multiobjective Evolutionary Algorithms
98(5)
5.4 Discussion
103(2)
6. Multiview Range Image Registration 105(16)
6.1 Aligning common overlapping areas
105(5)
6.2 Global multiview registration
110(3)
6.3 Experimental results
113(3)
6.4 Alignment consistency
116(2)
6.5 Discussion
118(3)
7. Closing Comments 121(4)
7.1 Contributions
121(2)
7.2 Future work
123(2)
Appendix Experimental Results 125(32)
Bibliography 157(6)
Index 163