Atnaujinkite slapukų nuostatas

Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 [Kietas viršelis]

Edited by
  • Formatas: Hardback, 816 pages, aukštis x plotis: 235x155 mm, weight: 1421 g, XXVI, 816 p., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 10-Jan-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642104967
  • ISBN-13: 9783642104961
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 816 pages, aukštis x plotis: 235x155 mm, weight: 1421 g, XXVI, 816 p., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 10-Jan-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642104967
  • ISBN-13: 9783642104961
Kitos knygos pagal šią temą:
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Part I Scanning Probe Microscopy Techniques
1 Time-Resolved Tapping-Mode Atomic Force Microscopy
3(36)
Ali Fatih Sarioglu
Olav Solgaard
1.1 Introduction
3(2)
1.2 Tip-Sample Interactions in TM-AFM
5(3)
1.2.1 Interaction Forces in TM-AFM
5(1)
1.2.2 Cantilever Dynamics and Mechanical Bandwidth in TM-AFM
6(2)
1.3 AFM Probes with Integrated Interferometric High Bandwidth Force Sensors
8(22)
1.3.1 Model
9(4)
1.3.2 Interferometric Grating Sensor
13(6)
1.3.3 Sensor Mechanical Response & Temporal Resolution
19(2)
1.3.4 Fabrication
21(2)
1.3.5 Detection Schemes
23(3)
1.3.6 Characterization and Calibration
26(1)
1.3.7 Time-Resolved Force Measurements
27(3)
1.4 Imaging Applications
30(4)
1.4.1 Nanomechanical Material Mapping
31(1)
1.4.2 Imaging of Molecular Structures in Self Assembled Monolayers
32(1)
1.4.3 Imaging Microphase Seperation in Triblock Copolymer
33(1)
1.5 Conclusion
34(5)
References
35(4)
2 Small Amplitude Atomic Force Spectroscopy
39(20)
Sissi de Beer
Dirk van den Ende
Daniel Ebeling
Frieder Mugele
2.1 Introduction
39(3)
2.2 Small Amplitude Spectroscopy
42(12)
2.2.1 Actuation Techniques
43(10)
2.2.2 Effect Frequency Dependent Damping
53(1)
2.3 Summary
54(5)
References
57(2)
3 Combining Scanning Probe Microscopy and Transmission Electron Microscopy
59(42)
Alexandra Nafari
Johan Angenete
Krister Svensson
Anke Sanz-Velasco
Hakan Olin
3.1 Introduction
60(2)
3.1.1 Why Combine SPM and TEM?
60(2)
3.2 Some Aspects of TEM Instrumentation
62(1)
3.3 Incorporating an STM Inside a TEM Instrument
63(12)
3.3.1 Applications of TEMSTM
66(9)
3.4 Incorporating an AFM Inside a TEM Instrument
75(9)
3.4.1 Optical Force Detection Systems
76(1)
3.4.2 Non-optical Force Detection Systems
77(3)
3.4.3 TEMAFM Applications
80(4)
3.5 Combined TEM and SPM Sample Preparation
84(8)
3.5.1 Nanowires and Nanoparticles
85(2)
3.5.2 A Proper Electrical Contact for TEMSPM
87(3)
3.5.3 Lamella Samples
90(1)
3.5.4 Electron Beam Irradiation Effects
90(2)
3.6 Conclusion
92(9)
References
93(8)
4 Scanning Probe Microscopy and Grazing-Incidence Small-Angle Scattering as Complementary Tools for the Investigation of Polymer Films and Surfaces
101(34)
Peter Muller-Buschbaum
Volker Korstgens
4.1 Introduction
101(2)
4.2 Statistical Analysis of SPM Data
103(6)
4.3 Introduction to Grazing-Incidence Small-Angle Scattering
109(4)
4.4 Comparison of Real and Reciprocal Space Data
113(4)
4.5 Complementary and In Situ Experiments
117(10)
4.6 Combined In Situ GISAXS and SPM Measurements
127(1)
4.7 Summary and Outlook
128(7)
References
129(6)
5 Near-Field Microwave Microscopy for Nanoscience and Nanotechnology
135(38)
Kiejin Lee
Harutyun Melikyan
Arsen Babajanyan
Barry Friedman
5.1 Principles of Microwave Microscope
135(4)
5.1.1 Introduction
135(1)
5.1.2 Near-field Interaction
136(2)
5.1.3 Microwave Frequencies
138(1)
5.2 Detailed Description of the Near-field Microwave Microscope
139(5)
5.2.1 Probe-Tip for NFMM
139(1)
5.2.2 Dipole-Dipole Interaction
140(1)
5.2.3 Tip-sample Distance Control in NFMM
141(2)
5.2.4 The Basic Experimental Setup of NFMM
143(1)
5.3 Theory of Near-field Microwave Microscope
144(8)
5.3.1 Transmission Line Theory
144(2)
5.3.2 Perturbation Theory
146(1)
5.3.3 Finite-Element Model
147(5)
5.4 Electromagnetic Field Distribution
152(4)
5.4.1 Probe-tip-fluid Interaction
152(1)
5.4.2 Probe-tip-photosensitive Heterojunction Interaction
153(1)
5.4.3 Probe-Tip-Ferromagnetic Thin Film, Magnetic Domain Interaction
154(2)
5.5 Experimental Results and Images Obtained by Near-Field Microwave Microscope
156(17)
5.5.1 NFMM Characterization of Dielectrics and Metals
156(1)
5.5.2 NFMM Characterization of Semiconductor Thin Films
157(1)
5.5.3 NFMM Characterization of DNA Array, SAMs, and Mixture Fluids
158(2)
5.5.4 Biosensing of Fluids by a NFMM
160(2)
5.5.5 NFMM Characterization of Solar Cells
162(3)
5.5.6 NFMM Characterization of Organic FET
165(2)
5.5.7 NFMM Characterization of Magnetic Domains
167(2)
References
169(4)
6 Single Cluster AFM Manipulation: a Specialized Tool to Explore and Control Nanotribology Effects
173(24)
Guido Paolicelli
Massimo Rovatti
Sergio Valeri
6.1 Introduction
173(2)
6.2 Manipulation and Friction Effects Explored by Dynamic AFM
175(11)
6.2.1 Experimental Evidences
175(4)
6.2.2 Controlled Movements
179(2)
6.2.3 Depinning and Energy Dissipation
181(5)
6.3 The Problem of Contact Area in Nanotribology Explored by AFM Cluster Manipulation
186(5)
6.4 Conclusion
191(6)
References
192(5)
Part II Characterization
7 Cell Adhesion Receptors Studied by AFM-Based Single-Molecule Force Spectroscopy
197(20)
Robert H. Eibl
7.1 Introduction
198(4)
7.2 AFM-Based Single-Molecule Force Spectroscopy
202(1)
7.3 Receptor-Ligand Interactions
203(1)
7.4 Cell Adhesion Interactions on Living Cells
204(8)
7.5 Limitations of the AFM Method
212(5)
References
213(4)
8 Biological Application of Fast-Scanning Atomic Force Microscopy
217(30)
Yuki Suzuki
Masatoshi Yokokawa
Shige H. Yoshimura
Kunio Takeyasu
8.1 Introduction
217(2)
8.2 Principles of Biological Fast-Scanning AFM
219(2)
8.2.1 Hansma's Fast-Scanning AFM
219(1)
8.2.2 Miles' Fast-Scanning AFM
219(1)
8.2.3 Ando's Fast-Scanning AFM
220(1)
8.3 Effects of a Scanning Probe and Mica Surface on Biological Specimens
221(4)
8.3.1 Experimental Conditions Required for Fast-Scanning AFM Imaging
221(1)
8.3.2 Effects of High-Speed Scanning on the Behavior of DNA in Solution
222(1)
8.3.3 Effects of High-Speed Scanning on Protein Movement
222(3)
8.4 Application to Biological Macromolecule Interactions
225(8)
8.4.1 Application to Protein-Protein Interaction
225(4)
8.4.2 Application to DNA-Protein Interaction
229(4)
8.5 Mechanisms of Signal Transduction at the Single-Molecule Level
233(5)
8.5.1 Conformational Changes of Ligand-Gated Ion Channels
235(1)
8.5.2 Conformational Changes of G-protein Coupled Receptors
235(1)
8.5.3 Direct Visualization of Albers-Post Scheme of P-Type ATPases
236(2)
8.6 Conclusion
238(9)
References
238(9)
9 Transport Properties of Graphene with Nanoscale Lateral Resolution
247(40)
Filippo Giannazzo
Vito Raineri
Emanuele Rimini
9.1 Introduction
248(4)
9.2 Transport Properties of Graphene
252(17)
9.2.1 Electronic Bandstructure and Dispersion Relation
252(4)
9.2.2 Density of States
256(1)
9.2.3 Carrier Density
256(2)
9.2.4 Quantum Capacitance
258(1)
9.2.5 Transport Properties: Mobility, Electron Mean Free Path
259(10)
9.3 Local Transport Properties of Graphene by Scanning Probe Methods
269(12)
9.3.1 Lateral Inhomogeneity in the Carrier Density and in the Density of States
269(4)
9.3.2 Nanoscale Measurements of Graphene Quantum Capacitance
273(2)
9.3.3 Local Electron Mean Free Path and Mobility in Graphene
275(3)
9.3.4 Local Electronic Properties of Epitaxial Graphene/4H-SiC (0001) Interface
278(3)
9.4 Conclusion
281(6)
References
282(5)
10 Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures
287(34)
Lanping Yue
Sy-Hwang Liou
10.1 Magnetic Force Microscopy
287(4)
10.1.1 Introduction
287(1)
10.1.2 MFM Basic Principles
288(1)
10.1.3 MFM Image Contrast
289(1)
10.1.4 Magnetic Imaging Resolution
290(1)
10.2 High-Resolution MFM Tips
291(5)
10.3 Magnetic Domains
296(5)
10.4 Patterned Nanomagnetic Films
301(8)
10.4.1 FIB Milled Patterns
301(2)
10.4.2 Arrays of Magnetic Dots by Direct Laser Patterning
303(6)
10.5 Template-Mediated Assembly of FePt Nanoclusters
309(1)
10.6 Interlayer Exchange-Coupled Nanocomposite Thin Films
310(4)
10.6.1 (Co/Pt)/NiO/(CoPt) Multilayers with Perpendicular Anisotropy
311(2)
10.6.2 Co/Ru/Co Trilayers with In-Plane Anisotropy
313(1)
10.7 Conclusion (Outlook)
314(7)
References
315(6)
11 Semiconductors Studied by Cross-sectional Scanning Tunneling Microscopy
321(34)
J.K. Garleff
J.M. Ulloa
P.M. Koenraad
11.1 Introduction
321(1)
11.2 Cleaving Methods and Geometries
322(5)
11.3 Properties of Cleaved Surfaces
327(3)
11.3.1 The (111) Surface of Silicon and Germanium
327(2)
11.3.2 The (110) Surface of Silicon
329(1)
11.3.3 The (110) Surface of III-V Semiconductors
329(1)
11.3.4 The (110) Surface of II-VI Semiconductors
330(1)
11.4 Semiconductor Bulk Properties
330(2)
11.4.1 Ordering in Semiconductor Alloys
330(2)
11.4.2 Phase Separation Effects
332(1)
11.5 Low-Dimensional Semiconductor Nanostructures
332(12)
11.5.1 Quantum Wells
333(4)
11.5.2 Quantum Dots
337(7)
11.6 Impurities in Semiconductors
344(11)
11.6.1 Impurity Atoms in Silicon
345(1)
11.6.2 Impurity Atoms in III-V and II-VI Semiconductors
346(3)
References
349(6)
12 A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy
355(30)
V. Presser
A. Loges
K.G. Nickel
12.1 Introduction
356(1)
12.2 Oxidation of Silicon Carbide
357(1)
12.3 Silica: Growth and Crystallization
358(4)
12.4 Etching
362(1)
12.5 Scale and Interface Morphology
363(8)
12.6 Kinetics: Details and Overall Model
371(6)
12.7 Conclusion and Outlook
377(8)
References
378(7)
13 The Scanning Probe-Based Deep Oxidation Lithography and Its Application in Studying the Spreading of Liquid n-Alkane
385(30)
Yuguang Cai
Lingbo Lu
13.1 Introduction
385(1)
13.2 Part 1 The Chemical Patterning Method for Alkane Spreading Study
386(11)
13.2.1 Octadecyltrichlorosilane as the Substrate for Pattern Fabrication
386(2)
13.2.2 Fabricating Hydrophilic Chemical Patterns on OTS: The Scanning Probe Deep Oxidation Lithography
388(2)
13.2.3 The Structure and Chemistry of the OTSpd Pattern
390(1)
13.2.4 The Depth of the OTSpd Pattern
391(2)
13.2.5 OTSpd Is Terminated with Carboxylic Acid Group
393(2)
13.2.6 The Two-Step Patterning Method for Liquid Spreading Studies
395(1)
13.2.7 The Validity of the Two-Step Patterning Approach
395(1)
13.2.8 The Time Scale of the Heating-Freezing Cycle and the Time Scale of the Spreading
396(1)
13.3 Part 2 Structures of Long-Chain Alkanes on Surface
397(6)
13.3.1 Alkane Structures on Hydrophilic Surfaces and on Hydrophobic Surfaces
398(3)
13.3.2 The Multiple Domains Within a Seaweed-Shaped Layer
401(2)
13.4 Part 3 The Role of Vapor During the Spreading of Liquid Alkane
403(7)
13.4.1 The Stability of the Parallel Layer During the Spreading
407(3)
13.5 Conclusion
410(5)
References
411(4)
14 Self-assembled Transition Metal Nanoparticles on Oxide Nanotemplates
415(24)
Emanuele Cavaliere
Stefano Agnoli
Gaetano Granozzi
Luca Gavioli
14.1 Introduction
415(2)
14.2 The Structure of the UT Oxide Layers
417(6)
14.2.1 TiOx/Pt(111)
418(2)
14.2.2 Al2O3/Ni3Al(111)
420(2)
14.2.3 FeO/Pt(111)
422(1)
14.3 The Oxide Layers as Nanotemplates for Metal NPs
423(12)
14.3.1 Au and Fe on z'-TiOx-Pt(111)
424(3)
14.3.2 Metals on Al2O3/Ni3Al(111)
427(4)
14.3.3 Au on FeO/Pt(111)
431(4)
14.4 Conclusions
435(4)
References
435(4)
15 Mechanical and Electrical Properties of Alkanethiol Self-Assembled Monolayers: A Conducting-Probe Atomic Force Microscopy Study
439(34)
Frank W. DelRio
Robert F. Cook
15.1 Introduction
439(2)
15.2 Order, Orientation, and Surface Coverage
441(3)
15.3 Conducting-Probe Atomic Force Microscopy
444(5)
15.4 Theoretical Framework
449(5)
15.4.1 Elastic Adhesive Contact
449(1)
15.4.2 Effective Elastic Modulus of a Film-Substrate System
450(2)
15.4.3 Electron Tunneling Through Thin Insulating Films
452(2)
15.5 Mechanical Properties
454(4)
15.6 Electrical Properties
458(5)
15.7 Conclusions and Future Directions
463(10)
References
465(8)
16 Assessment of Nanoadhesion and Nanofriction Properties of Formulated Cellulose-Based Biopolymers by AFM
473(32)
Maurice Brogly
Ahmad Fahs
Sophie Bistac
16.1 Introduction
473(1)
16.2 Application of Cellulose-Based Biopolymers in Pharmaceutical Formulations
474(1)
16.3 General Composition of Pharmaceutical Film Coatings
475(2)
16.3.1 Plasticizers
475(1)
16.3.2 Surfactants and Lubricants
476(1)
16.4 Structure and Bulk Properties of HPMC Biopolymers
477(4)
16.4.1 Chemical Structure of HPMC
477(1)
16.4.2 Physicochemical Properties
478(3)
16.5 Physicochemical Properties of HPMC-Formulated Films
481(5)
16.5.1 Materials
481(1)
16.5.2 Pure HPMC Film Formation
482(1)
16.5.3 Formulation of HPMC-Stearic Acid Films and HPMC-PEG Films
482(1)
16.5.4 Thermomechanical Properties of HPMC-PEG Films
483(1)
16.5.5 Thermo-Mechanical Properties of HPMC-SA Films
483(3)
16.6 Surface Properties of HPMC-Formulated Films Adhesion
486(16)
16.6.1 Surface Topography and Morphologies by AFM
486(4)
16.6.2 AFM Force-Distance Experiments
490(6)
16.6.3 LFM Nanofriction Experiments
496(6)
16.7 Conclusions
502(3)
References
503(2)
17 Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear
505(28)
Mario D'Acunto
17.1 Introduction
505(2)
17.2 Single Asperity Nanowear Experiments
507(6)
17.2.1 Surface Growth Processes Induced by AFM Tip: Experimental Results
511(2)
17.3 A Model for Wear Debris Production in a UHV AFM Scratching Test
513(10)
17.3.1 Localisation of the Free Energy Changes Due to Stressing AFM Tip
514(2)
17.3.2 Flux of Adatoms Induced by the AFM Stressing Tip
516(3)
17.3.3 Evaluation of Number Cluster Density via Nucleation Theory
519(4)
17.4 Continuum Approach for the Surface Growth Induced by Abrasive Adatoms
523(6)
17.5 Conclusions and Future Perspectives
529(4)
References
530(3)
18 Frictional Stick-Slip Dynamics in a Deformable Potential
533(18)
Djuidje Kenmoe Germaine
Kofane Timoleon Crepin
18.1 Introduction
533(2)
18.2 The Model and Equation of motion
535(5)
18.2.1 Potential and geometry
535(2)
18.2.2 Frictional Force and Static Friction as a Function of the Shape Parameter
537(1)
18.2.3 Equation of Motion
538(2)
18.3 Numerical Results
540(5)
18.3.1 Phase Space and Stroboscope Observation
540(1)
18.3.2 Stick-Slip Phenomena
541(3)
18.3.3 Influence of the Shape Parameter on the Transition from Stick-Slip Motion to Modulated Sliding State
544(1)
18.4 Pure Dry Friction
545(3)
18.5 Conclusion
548(3)
References
548(3)
19 Capillary Adhesion and Nanoscale Properties of Water
551(22)
Michael Nosonovsky
Bharat Bhushan
19.1 Introduction
551(2)
19.2 Metastable Liquid Capillary Bridges
553(8)
19.2.1 Negative Pressure in Water
553(2)
19.2.2 Negative Pressure in Capillary Bridges in AFM Experiments
555(2)
19.2.3 Disjoining Pressure
557(1)
19.2.4 Calculating Pressure in Capillary Bridges
558(3)
19.3 Capillarity-Induced Low-Temperature Boiling
561(2)
19.4 Room Temperature Ice in Capillary Bridges
563(5)
19.4.1 Humidity Dependence of the Adhesion Force
563(2)
19.4.2 Ice in the Capillary Bridges
565(1)
19.4.3 Water Phase Behavior Near a Surface and in Confinement
566(2)
19.5 Conclusions
568(5)
References
568(5)
20 On the Sensitivity of the Capillary Adhesion Force to the Surface Roughness
573(16)
Michael Nosonovsky
Seung-Ho Yang
Huan Zhang
20.1 Introduction
573(2)
20.2 Capillary Force Between Rough Surfaces
575(6)
20.2.1 Shape of the Meniscus
576(2)
20.2.2 Capillary Force
578(3)
20.3 Case-Study: Two-Tiered Roughness
581(1)
20.4 Experimental Data
582(3)
20.5 Conclusions
585(4)
References
586(3)
Part III Industrial Applications
21 Nanoimaging, Molecular Interaction, and Nanotemplating of Human Rhinovirus
589(56)
Markus Kastner
Christian Rankl
Andreas Ebner
Philipp D. Pollheimer
Stefan Howorka
Hermann J. Gruber
Dieter Blaas
Peter Hinterdorfer
21.1 Introduction
589(1)
21.2 Contact Mode AFM Imaging
590(3)
21.3 Dynamic Force Microscopy Imaging
593(3)
21.3.1 Magnetic AC Mode (MAC mode) AFM Imaging
594(2)
21.4 Introduction to Molecular Recognition Force Spectroscopy
596(9)
21.4.1 AFM Tip Chemistry
597(3)
21.4.2 Applications of Molecular Recognition Force Spectroscopy
600(3)
21.4.3 Topography and Recognition Imaging
603(2)
21.5 Nanolithography
605(7)
21.5.1 Applications of Nanolithography
605(6)
21.5.2 Native Protein Nanolithography
611(1)
21.6 Imaging and Force Measurements of Virus-Receptor Interactions
612(33)
21.6.1 Virus Particle Immobilization and Characterization
613(6)
21.6.2 Virus-Receptor Interaction Analyzed by Molecular Recognition Force Spectroscopy
619(5)
21.6.3 Virus Immobilization on Receptor Arrays
624(9)
References
633(12)
22 Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications
645(46)
Valeria Chiono
Emiliano Descrovi
Susanna Sartori
Piergiorgio Gentile
Mirko Ballarini
Fabrizio Giorgis
Gianluca Ciardelli
22.1 Introduction
645(8)
22.1.1 Biomimetic Material Design Criteria for Biomedical Applications
645(3)
22.1.2 Techniques for the Characterization of Surfaces at the Nanoscale
648(5)
22.2 Realization of Biomimetic Surfaces by Coating Strategies
653(11)
22.2.1 Generalities
653(2)
22.2.2 Coating Methods
655(9)
22.3 Realization of Biomimetic Surfaces by Chemical Modification
664(8)
22.3.1 Introduction of Functional Groups on Polymer Surfaces by Irradiation and Chemical Techniques
666(2)
22.3.2 Immobilization of Bioactive and Biomimetic Compounds
668(1)
22.3.3 Not-Conventional Approaches Towards Nanoscale Tailoring of Biomimetic Surfaces
669(3)
22.4 Scanning Probe Techniques for Optical and Spectroscopic Characterization of Surfaces at High Resolution
672(12)
22.4.1 Dynamic-Mode AFM for the Characterization of Organosilane Self-Assembled Monolayers
672(4)
22.4.2 SNOM for Fluorescence Imaging
676(4)
22.4.3 TERS for Chemical Mapping at the Nanoscale
680(4)
22.5 Conclusions
684(7)
References
684(7)
23 Conductive Atomic-Force Microscopy Investigation of Nanostructures in Microelectronics
691(32)
Christian Teichert
Igor Beinik
23.1 Introduction
691(2)
23.2 Technical Implementation of C-AFM
693(4)
23.3 C-AFM to Study Gate Dielectrics
697(6)
23.3.1 Local Current-Voltage Characteristics, Dielectric Breakdown, and Two-Dimensional Current Maps
698(3)
23.3.2 Investigation of High-k Dielectrics
701(2)
23.4 Conductivity Measurements of Phase-Separated Semiconductor Nanostructures
703(6)
23.4.1 Exploration of Supported Nanowires and Nanodots
704(3)
23.4.2 Investigation of Defects in Ternary Semiconductor Alloys
707(2)
23.5 C-AFM Investigations of Nanorods
709(5)
23.6 Application of C-AFM to Electroceramics
714(2)
23.7 Outlook to Photoconductive AFM
716(1)
23.8 Overall Summary and Perspectives
717(6)
References
718(5)
24 Microscopic Electrical Characterization of Inorganic Semiconductor-Based Solar Cell Materials and Devices Using AFM-Based Techniques
723(68)
Chun-Sheng Jiang
24.1 Introduction
723(2)
24.2 AFM-Based Nanoelectrical Characterization Techniques
725(7)
24.2.1 Scanning Probe Force Microscopy
725(3)
24.2.2 Scanning Capacitance Microscopy
728(3)
24.2.3 Conductive AFM
731(1)
24.3 Characterization of Junctions of Solar Cells
732(26)
24.3.1 Junction Location Determination
732(13)
24.3.2 Electrical Potential and Field on Junctions
745(13)
24.4 Characterization of Grain Boundaries of Polycrystalline Materials
758(13)
24.4.1 Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of Polycrystalline Si Thin Films
759(6)
24.4.2 Electrical Potential Barrier on Grain Boundaries of Chalcopyrite Thin Films
765(6)
24.5 Localized Structural and Electrical Properties of nc-Si:H and a-Si:H Thin Films and Devices
771(13)
24.5.1 Localized Electrical Properties of a-Si:H and nc-Si:H Mixed-Phase Devices
772(7)
24.5.2 Doping Effects on nc-Si:H Phase Formation
779(5)
24.6 Summary
784(7)
References
786(5)
25 Micro and Nanodevices for Thermoelectric Converters
791(22)
J.P. Carmo
L.M. Goncalves
J.H. Correia
25.1 Introduction
791(6)
25.1.1 Macrodevices
792(1)
25.1.2 Microdevices
793(2)
25.1.3 Nanodevices and Superlattices
795(2)
25.2 Thermoelectric Converters Models
797(5)
25.2.1 Peltier Effect on Hot and Cold Sides
800(1)
25.2.2 Joule Heating
801(1)
25.3 Thin-Films Technology for Thermoelectric Materials
802(7)
25.3.1 Bismuth and Antimony Tellurides Depositions
804(4)
25.3.2 Optimization of Thermoelectric Properties
808(1)
25.4 Superlattices for Fabrication of Thermoelectric Converters
809(4)
25.4.1 Why Superlattices?
809(1)
25.4.2 Materials and Properties
810(1)
25.4.3 Fabrication
810(1)
References
811(2)
Index 813
Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) at the Ohio State University, Columbus, Ohio. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and three semi-honorary and honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization, and applications to bio/nanotechnology and biomimetics. He has authored 6 scientific books, more than 90 handbook chapters, more than 700 scientific papers (h factor 42+), and more than 60 scientific reports, edited more than 45 books, and holds 17 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies. He has organized various international conferences and workshops. He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professor appointments at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich and EPFL Lausanne.