Atnaujinkite slapukų nuostatas

El. knyga: Schrodinger Operators, Spectral Analysis and Number Theory: In Memory of Erik Balslev

Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book gives its readers a unique opportunity to get acquainted with new aspects of the fruitful interactions between Analysis, Geometry, Quantum Mechanics and Number Theory. The present book contains a number of contributions by specialists in these areas as an homage to the memory of the mathematician Erik Balslev and, at the same time, advancing a fascinating interdisciplinary area still full of potential.





Erik Balslev has made original and important contributions to several areas of Mathematics and its applications. He belongs to the founders of complex scaling, one of the most important methods in the mathematical and physical study of eigenvalues and resonances of Schrödinger operators, which has been very essential in advancing the solution of fundamental problems in Quantum Mechanics and related areas. He was also a pioneer in making available and developing spectral methods in the study of important problems in Analytic Number Theory.
S. Albeverio and R. Weder, Introduction to the scientific contributions
in the book.- S. Albeverio and I. Karabash, Asymptotics of random resonances
generated by a point process of delta-interactions.- M. S. Ashbaugh, F.
Gesztesy, L. Hermi, K. Kirsten, L. Littlejohn and H. Tossounian, Greens
function and Eulers formula for (2n).- P. Bérard and B. Helffer, On
Courants nodal domain property for linear combinations of eigenfunctions.-
Part II: A. Boutet de Monvel and L. Zielinski,  Asymptotic behavior of large
eigenvalues of the two-photon Rabi model.- J.-Michel Combes and P. Hislop,
Some remarks on spectral averaging and the local density of states for random
Schrödinger operators on L²(d).- R. Froese and I. Herbst, Resonances in the
one dimensional Stark effect in the limit of small field.- P. Kurasov and J.
Muller, On the spectral gap for networks of beams.- K. Nicholas Leibovic,
Some notes in the context of binocular space perception.- T. Paul, Symbolic
calculus for singular curve operators.- Y. N. Petridis and M. S. Risager,
Higher order deformations of hyperbolic spectra.- S. K. Sekatskii, On the
generalized Lis criterion equivalent to the Riemann hypothesis and its first
applications.- M. Spreafico and A. Zaccagnini, Regularizing infinite products
by the asymptotics of finite products.- R. Weder, Trace maps under weak
regularity assumptions.